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Abstract. Initializing the hyper-parameters (HPs) of machine learning
(ML) techniques became an important step in the area of automated
ML (AutoML). The main premise in HP initialization is that a HP set-
ting that performs well for a certain dataset(s) will also be suitable for
a similar dataset. Thus, evaluation of similarities of datasets based on
their characteristics, named meta-features (MFs), is one of the basic
tasks in meta-learning (MtL), a subfield of AutoML. Several types of
MF's were developed from which those based on principal component
analysis (PCA) are, despite their good descriptive characteristics and
relatively easy computation, utilized only marginally. A novel approach
to HP initialization combining dynamic time warping (DTW), a well-
known similarity measure for time series, with PCA MFs is proposed
in this paper which does not need any further settings. Exhaustive ex-
periments, conducted for the use-cases of HP initialization of decision
trees and support vector machines show the potential of the proposed
approach and encourage further investigation in this direction.

Keywords: Automated ML - Metalearning - PCA - DTW.

1 Introduction

The growing popularity of machine learning (ML) in various application domains
and the shortage of data scientists has raised the demand for automated ML (Au-
toML) [7]. A special focus of AutoML is on configuring the hyper-parameters
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(HPs) of ML techniques, a task belonging to the family of black-box optimiza-
tion problems [11], often approached by heuristics ranging from very simple
methods, such that random search, to more advanced ones, such that sequen-
tial model-based optimization (SMBO) or biologically inspired techniques, eg.
particle swarm optimization (PSO). It is important to note that these heuristics
need to perform a certain number of iterations to arrive at recommendation in
case of a new dataset. Moreover, the performance of these heuristics depends on
the initial selection of the HP settings from which these models start their com-
putations [15]. Another important aspect is that these heuristics possess their
own HPs (eg. the population size or the surrogate model) which would also need
some fine-tuning to perform in the most optimal way.

Another approach to recommend optimal HP setting for a ML technique on
a given dataset is to use meta-learning (MtL) [5]. The main premise of MtL is
that knowledge and experience gained from previous applications of various ML
techniques on different datasets can be employed to recommend the optimal HP
setting in case of a new dataset. In this context, “knowledge” and “experience”
are represented by a so-called meta-model that captures the relation between
the characteristics of a dataset and the predictive performance of ML techniques
w.r.t. various HP settings.

The first step in the use of MtL is the representation of each dataset by a
vector of features, often named meta-features (MFs) which describe important
aspects of a dataset and are used as input attributes in MtL. The next step is
to record the predictive performance of ML techniques w.r.t. their HP settings
on these datasets. This performance measure will be the target attribute for
MtL. Finally, a meta-model induced by employing classification or regression
techniques on the created meta-data can be used to predict the most adequate
HP setting for a ML technique on a new dataset. However, not only the ML
techniques deriving the meta-model but, also, many MF extraction techniques
have their own HP settings which should be fine-tuned as well.

This study proposes a simple, yet efficient MtL approach based on Principal
Component Analysis (PCA) MF vectors, denoted PCA-MF here, for real-time
recommendation and initialization of HP settings of ML techniques. The pro-
posed approach utilizes dynamic time warping (DTW), a similarity measure
well-known in time-series analysis (see [4]), to compute the similarity of two
PCA-MFs. The use of DTW is, according to our knowledge, new in MtL. The
proposed approach has no own HPs, thus, there is no need to an additional
fine-tuning. To empirically evaluate the proposed approach, we simulated the
use-case of recommending HP settings for Support Vector Machine (SVM) and
Decision Tree Induction (DT) algorithms applied to a new dataset. Experiments
using 50 real-world datasets are performed comparing the proposed approach
(employing a simple k-Nearest Neighbor (kNN) meta-model) with various base-
line approaches.
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2 PCA Meta-features

Eight main MF types (categories) are documented in the literature as introduced
in Tab. 2. Another type of MFs explores statistical correlations in the dataset’s
predictive attribute values. For such, PCA can be used and the resulting MF's
are called PCA-MF in this paper. Since PCA-MF is in the main focus of this
paper, the underlying model will be introduced in a more formal way in this
section.

2.1 Principal Component Analysis

According to [13], PCA finds a linear transformation of attributes in a dataset
such that the information present in the data is maximally preserved in the
sense of minimum squared error. Thus, PCA can be seen as a feature extraction
method assigning simple weights to the extracted (latent) features.

To formally show how PCA works, let D € X x Y be a pre-processed (i.e.
standardized and binarized) dataset such that X € R"*¢ represents the pre-
dictive attributes and Y € R"*!, the target attribute. For simple regression,
binary classification and multi-class classification tasks ¢ = 1 while in case of
multi-label classification ¢ > 1. PCA takes X as input and returns a matrix
W e R*¢, the i-th column w; = (w;,, Ws,,...,w;, ) € R® of which is the i-th
transformation vector of weights that maps X € R"*¢ to the i-th principal com-
ponent p; = Xw? € R" (1 <i < ¢). Together with W, PCA returns a vector
e = (e, ea,...,e.) which elements, the eigenvalues, express the importance of
the respective principal components. Eigenvalues are related to the standard de-
viation in X projected to the corresponding principal components, and represent
the proportion of variance in X explained by the corresponding principal com-
ponents. The values in e are in decreasing order, i.e. for each a,b € {1,...,c}
such that a < b, e, > ep. The proportion of variance 7; in the data, explained

€4

by the corresponding ith principal component, is computed as m; = — and
2 e

i=1

the approach proposed in this paper is based on a MF vector

mP = (7y, 79, ..., Tc) (1)

2.2 Related Work on PCA-MF

To explain how related approaches work, let us consider that two MF vectors
m?" = (my,m2,...,7,) and m?ca = (71,72, ..., 7, ) extracted from datasets D;
and Dy, respectively, may have different lengths, i.e. ¢; # ¢;. However, the use
of MtL requires® a fixed number of predictive attributes, therefore, the charac-
terization of a dataset must result in a fixed number of MFs. The usual solution
when the number of MFs vary for different datasets is to aggregate the MFs of

the same type into one or more values resulting in one or more MF(s).

5 Since a meta-model is learned by traditional ML techniques.



4 T. Horvath et al.

The ratio d/c was used in [2] as a MF, where d is the number of principal
components that explains 95% of the variance in the dataset®. The skewness and
the kurtosis of the first principal component p; are added to the previous PCA
MF d/c in [8]. The use of the minimum and the maximum eigenvalue (e; and
e.) and the proportion of variance 7 explained by the first principal component
were proposed as MFs in [9].

The price of aggregation to only one, two or three values, as described above,
is a possible loss of useful meta-information about the dataset. The use of 22
PCA-based MFs was proposed in [1], such that the 10 histogram bin values
of the proportion of variance explained by each principal component?, together
with their normalized values, the proportion of variance explained by the first
eigenvalue (7 from the Eq. 1) and the ratio d/c from [2].

A more general definition of the histogram MF vector introduced in [1], by
allowing an arbitrary number b of bins for the histograms, can be defined as

m"™ = (61,6,,...,6) (2)

c . .
such that 6; = > 6(% <7 < i) for 1 <4 <band d(x) =1 if the expression
j=1
x is true, otherwise d(x) = 0.

We propose another method, slightly different variation of the histogram
MF vector, called the cut-point MF vector in this paper which, first, computes
the vector m® = (¥1,79,...,9,) of cumulative proportion of variances from the

K3
vector mP°* where ; = Y m; for 1 <4 < ¢. Next, m® is aggregated into the
j=1
vector

meP = (/{1, Koy Hb) (3)

where k; = arg min ¥ > %, for 1 < ¢ < b. In other words, the indices of
those eigenvalueg are returned which correspond to the cumulative proportion
of variance that first reach the given cut points %, %, ey % of the interval [0, 1].
Since Ky is, in general, equal to the number of eigenvalues (principal components),
the introduced cut-point aggregation preserves the meta-information about the
number of predictive attributes in the dataset. As a result, a MF vector mP¢® of
length c is aggregated into a MF vector m"* of length b such that b is the same

for all datasets.

As far as we know, the histogram MF vector method has not become widely
used in MtL. Also, we could not find any approach similar to the cut-point MF
method in the literature.

5 According to the vector m® = (91, 92,...,9), d = min{i |1 <i < ¢, ¥ > 0.95}),
and c is the number of attributes in the dataset.
7 Basically, a 10-bin histogram of the values of m?® from the Eq. 1
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Algorithm 1 kNN based recommendation of initial hyper-parameters
1: procedure RECOMMENDHP (m fe, D, H*, M, k, sim)
2: m <+ getMetaFeatures(mfe, D)

3: {i1,42,...,ix} < getNearestNeighbors(m, M, k, sim)
4 he Qi by, k), (bl hG, .kl C R > aggregation @
5: return h

3 The Proposed Approach

Let h = (hy,...,ht) € H be a particular HP setting for a ML algorithm (often
called as base-learner) where H = H; X - - - X H, is the admissible domain of pos-
sible HP settings. Let the function f : H x D — R represent the accuracy of the
base learner with the HP setting h € H on the dataset D € D, where D is the set
of datasets. Let D* = {D1,Dy,...,D,} C D be the set of those datasets, called

train datasets for MtL, for which the “best” HP settings h} = arg max f(h, D;)
heH
with relation to the base-learner are already known, computed off-line by an ar-

bitrary HP tuning technique and stored in H* = {h%,h},... h}. In this off-line
phase, the MF vectors related to each D; € D* of the form m?*®, m"* or mc"“»
(Egs. 1, 2 or 3, respectively), denoted here as m; = (m;,, m4,,...,m;,) , are
extracted and stored in M = {m, ms, ..., m,} where ¢ is the number of MFs.

The k-Nearest Neighbor (kNN) approach is a commonly used algorithm in
MtL [5], mainly because it is simple and works fast when the amount of data,
number of datasets and MF's is not large, which is the usual case in MtL.

The generic kNN based recommendation process of initial HP values consists
of three major steps, as illustrated in the Algorithm 1: First, the MF vector
m = (mq,mg,...,my) is extracted from a “new” dataset D € D according
to a given MF extraction approach mfe® corresponding to a certain MF type.
Second, the indexes i1, 12, ..., % of the k-nearest neighbors D;,,D;,,...,D;, of
D, using a MF similarity function sim?®, are found. Finally, the best HP settings
h ;hf ..., h} recorded for the k-nearest neighbors of D are aggregated (line

410 Thig ) "
4) using some aggregation function'® @ to get the returned results.

3.1 Utilizing Dynamic Time Warping

As pointed out before, aggregating MFs brings a risk of losing possibly useful in-
formation. However, the use of the standard MtL approaches, such as the kNN
with vector similarity measures? or any other ML meta-learner (eg. Random

8 We are using all the eight MF types described above as well as their different com-
binations in our experiments as baselines.

9 In case of MF vectors of the same size (eg. m"* and m®“?) we were experiment-
ing with well-known vector similarity measures such as Euclidean distance, inner
product, cosine similarity and Pearson correlation.

10 This study uses a simple average as an aggregation function, however, any other
aggregation function, like a weighted average, can be used, too.

his
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Fig. 1. An example of PCA-MFs m”® for four datasets. The graphs show the eigen-
values (y-axis) for the principal components (x-axis) which numbers correspond to
(different) numbers of attributes in these datasets.

Forest), would work only with MF vectors of equal lengths. Moreover, MF ag-
gregation would require to specify (ie. fine-tune) the length of the MF vectors.
Finally, the choice of the optimal MF types to extract and use is data dependent.

Thus, we propose a novel approach, utilizing Dynamic Time Warping (DTW)
[12], to measure the similarity between two MF vectors m“* and m%“*, defined
in the Eq. 1. DTW is an edit-distance like algorithm for measuring the similarity
of two time series by finding the best matching alignment between them even
if the two time series on its input have different lengths. This is the main mo-
tivation of our proposal to employ DTW for measuring the similarity between
two datasets represented by m{“ and m}* of different lengths resulting from
different number of attributes in the corresponding datasets D; and D;.

The two MF vectors m}“* and m}* are, basically, two decreasing sequences

expressing the (speed of) down-grade of the proportion of variance along the
latent directions (ordered w.r.t. their importance) computed via PCA in the
corresponding two datasets D; and Dj. Since each sequence is composed by
the principal components extracted from a dataset and the principal compo-
nents usually preserve the main characteristics of a dataset, similar sequences
are expected to be mapped to the same meta-target label.

An example situation with four datasets is illustrated in Fig. 1 where, ac-
cording to the “shapes” of the PCA-MF's, the middle two datasets are the most
similar to each other. Thus, it is assumed that the optimal HP settings (i.e.
meta-target labels) would be also similar for these two datasets.

Summarizing, in our proposal, the kNN meta-learner (Alg. 1) is applied to
the PCA-MF vectors mP°® (Eq. 1) with the sim function being the DTW.

The similarity of two datasets is a subjective matter and can be seen, ex-
pressed and measured in various ways what can be seen also in the colorful
palette of various MF types (see Tab. 2). PCA-MF's represent another view on
dataset similarity looking at this matter in different context. It is important that
nor DTW nor PCA, in its basic form, has no HPs to set up beforehand. The
only HP to fine-tune would be the k in the kNN model, however, this would
have to be set up using other types of MFs as well.
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Table 1. (Multi-class) Classification datasets used in the experiments and their main
characteristics: number of rows (r), columns (c) and classes (t).

No. Name T c t No. Name r ¢ t
1 acute-infl.-nephr. 99 6 2 2 analcatdata_lawsuit 263 4 2
3 appendicitis 106 7 2 4 autoUniv-au6-cd1-400 400 40 8
5 banknote-authentication 1348 4 2 6 breast-cancer-wisconsin 463 9 2
7 breast-tissue-4class 105 9 4 8 bupa 341 6 2
9 climate-simul.-craches 540 20 2 10 cloud 108 6 4
11 connect.-mines-vs-rocks 208 60 2 12 dermatology 366 34 6
13 ecoli 336 7 8 14 fertility-diagnosis 100 9 2
15 glass 213 9 6 16 habermans-survival 289 3 2
17 hayes-roth 93 4 3 18 heart-dis.-proc.-hun. 293 13 2
19 hepatitis 155 19 2 20 horse-colic-surgical 300 27 2
21 indian-liver-patient 570 10 2 22 ionosphere 350 33 2
23 iris 147 4 3 24 leaf 340 15 30
25 led7digit 146 7 10 26 leukemia-haslinger 100 50 2
27 mammographic-mass 689 5 2 28 monks3 438 6 2
29 movement-libras 330 90 15 30 parkinsons 195 22 2
31 pima-ind.-diab. 768 8 2 32 planning-relax 176 12 2
33 prnn_crabs 200 7 2 34 qualitative-bankr. 103 6 2
35 robot-failure-1p4 116 90 3 36 saheart 462 9 2
37 seeds 210 7 3 38 spect-heart 228 22 2
39 statlog-heart 270 13 2 40 teaching-assist.-eval. 110 5 3
41 thoracic-surgery 470 16 2 42 thyroid-newthyroid 215 5 3
43 tic-tac-toe 958 9 2 44 user-knowledge 403 5 5
45 volcanoes-e3 1276 3 5 46 voting 281 16 2
47 wdbc 569 30 2 48 wholesale-channel 440 7 2
49 wine 178 13 3 50 wpbc 198 33 23

4 Experiments

The experiments use two base-learners which differ in their learning paradigms
as well as the number and types of HPs. These base-learners are i) Support
Vector Machine (SVM) with the RBF kernel with two HPs (both real valued) to
initialise, and, ii) Decision Tree (DT) with nine HPs (real-valued and Boolean)
to initialise.

Since the motivation of this study is a MtL approach suitable for on-line
initialization of HP values, and class imbalance can occur, the experiments mea-
sure the predictive performance regarding balanced accuracy [6] and runtime. A
total of 50 multi-class classification datasets, from the UCI Machine Learning
Repository!! are used in the experiments as introduced in Tab. 1.

Various approaches were used as baselines for the experiments, differing in
the simplicity and strategy adopted to initialize or tune HPs. The first batch of
used baselines contains four HP tuning techniques:

— The default HP setting for SVM and DT provided by R packages 1071 and
RWeka, respectively, denoted as “DF”. Although this is the simplest baseline,
it can present a good performance in some situations [10].

— The best HP setting found by an exhaustive Random Search in the HP space,
denoted by “RS”, suggested in [3] as a good alternative for HP tuning. The
number of trials in RS was set to 2500 for SVM and 5000 for DT.

— The best HP setting found by Particle Swarm Optimization [16], denoted
as “PSO”. For SVM, the maximum number of evaluations was set to 2500.
For DT, the maximum number of evaluations was 5000. The default HP

" http://archive.ics.uci.edu/ml/
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Table 2. MF types, and their abbreviations (Abbr), identified in the literature. #
denotes the number of different MFs belonging to a given MF type/category.

MF type Abbr # Description

Simple SL 17 Simple measures

Statistical ST 7 Statistics measures

Inf. theoretic IT 8 Information theory measures
Landmarking LM 9 Performance of some ML algorithms
Model-based MB 17 Features extracted from decision trees
Time TI 5 Execution time of some ML algorithms
Complexity CO 14 Measures analyzing complexity
Complex Network CN 9 Complex network property measures

settings recommended by the corresponding R libraries for SVM and DT,
respectively, were added to the initial populations.

— The best HP setting found by Sequential Model-based Optimization [14],
denoted here as “SMBO”. For both SVM and DT, the maximum number of
evaluations (budget) was set to 200 and Random Forest (RF) was used as
surrogate learning model.

These baselines are for HP tuning and not HP initialisation since they are com-
putationally too expensive for on-line scenarios. However, since they perform
exhaustive (random or sophisticated) search, they can be good references to
measure the performance of HP initialisation approaches, such that, we can see
how close the initialised HPs are to the tuned ones. The other family of baselines
involves the following, traditional MtL approaches for HP initialisation:

— HP settings recommended by a kNN based meta-learner applying traditional
vector similarity measures? to MF vectors m®™f = (my, ma, ..., my), repre-
senting various MF type combinations, having the same length [ for all the 50
datasets. Here, all the 28 — 1 = 255 different combinations of the 8 MF types
presented in the Tab. 2 are considered corresponding to 255 different MF
vectors'?. The lengths [ of these MF vectors vary from 5 (only the TT MFs
are used) to 86 (all the MF's are used). These baselines are denoted as “NN-
CMEF”, an acronym for kNN based meta-learner with a certain Combination
of MF types.

— HP settings recommended by a kNN based meta-learner applying traditional
vector similarity measures? to MF vectors m"* and m®*?, defined in Egs. 2
and 3, respectively, having the same length b for all the 50 datasets. These
baselines are denoted as “NN-HIS” and “NN-CUP?”, respectively.

The experiments compare the performance of the proposed approaches with
the baselines. They also investigate the influence of different HP settings and
extensions of the compared approaches on their predictive accuracy. For such,

12 Where either all or none of the MFs belonging to a certain MF type were present in
a MF vector, according to the given combination of MF types.
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Algorithm 2 One complete cycle of experiments

1: HP tuning using SMBO, PSO, RS, DF > Computing H*
2: extraction of MF (mP°* m"* m? m°mf) > Computing M
3: recommendation of HP settings for the base-learners > Computing h
4: computation of the accuracy of the base-learners with the recommended HP set-

tings averaged on the folds of 5-fold cross-validation of a given dataset.

an experimental procedure performing a complete cycle of recommendation is
adopted for the experiments. The steps of this cycle are listed in the Alg. 2 (the
comments in the lines refer to the given parts and notations in Alg. 1).

This cycle is computed for all datasets in a leave-one-out manner, i.e. for
each dataset the cycle is performed such that the other 49 datasets are used as
“train” datasets for MtL and HP tuning. The balanced accuracy averaged over
the 5 folds will be denoted as “cycle-accuracy” of a dataset w.r.t. some base-
learner and HP setting recommender. For each dataset, nested cross-validation
is utilized for tuning the HPs of a base-level learner (SVM and DT) on this
dataset in case of SMBO, PSO and RS with 10 outer and 3 inner folds. The
whole cycle presented in the Alg. 2 is run 30 times for each “test” dataset, and
the average of the 30 computed'® “cycle-accuracy” values is returned what will
be denoted as “overall-accuracy” values.

The proposed approach, ie. using mP*® MF vectors and the DTW similarity
measure, is denoted as “DTW” here.

The datasets and the source codes for the proposed approach as well as for
the experiments (eg. Algs. 1 and 2) are publicly available!* for further use.

4.1 Results

The relative performance of the tested approaches, when compared to each other,
is similar for all the four choices for the HP tuning strategy. Fig. 2 and 3 illustrate
the averaged “overall-accuracies” across all the different settings of complete
cycles (see Alg. 2). The proposed approach (DTW) as well as the aggregated
PCA MF approaches (NN-HIS and NN-CUP) performed slightly better than
the CMF approaches with regard to the number of clear wins.

In the Fig. 4, the extraction times for different MF extraction approaches
related to the used datasets are illustrated. SL MFs are the most faster to extract,
however, these are very simple MFs and usually not performing well if only these
are used alone without any other MF types. The following most fastest to extract
MFs are the proposed PCA-MFs.

13 This was done because of the stochastic nature of the used HP tuning algorithms
(SMBO, PSO and RS), thus, to get more accurate statistics about the performance
of the used approaches.

4 https://github.com/rgmantovani/TimeSeriesHPInitialization
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(balanced) accuracy)

1 5 49 43 34 47 33 23 28 6 12 46 37 22 42 26 48 11 39 13 2 20 18 20 27 30 3 44 19 31 38 & 17 36 24 35 15 16 50 14 21 O 41 32 40 7 10 25 45 4
dataset id

Fig. 2. Performance of different approaches for SVM base-learner: Averaged “overall-
accuracies” across all the different settings of complete cycles (see Alg. 2). Clear winner
approaches are marked in the bottom line (abbreviations are placed in the vertical).

(balanced) accuracy)

128 5 3423 2 46 47 12 49 6 37 33 48 42 22 20 43 30 44 39 27 18 I 1L 17 2 31 3 13 15 19 38 36 24 B O 29 16 21 14 7 32 41 50 40 10 45 25 4
dataset id

Fig. 3. Performance of different approaches for DT base-learner: Averaged “overall-
accuracies” across all the different settings of complete cycles (see Alg. 2). Clear winner
approaches are marked in the bottom line (abbreviations are placed in the vertical).

4.2 Discussion

There are two important issues, mentioned in the introduction, regarding the
traditional MtL, approaches: First, as showed in the experiments, the choice of
a suitable combination of MF types for HP recommendation seems to be data
dependent. Second, the extraction of some MF types usually has a high compu-
tational cost. It is important to remember that in the experiments, either all the
MEF of a certain MF type were considered or were excluded completely from the
consideration. No MF selection procedure was performed on the set of all the
86 MFs listed in Tab. 2 what would probably result in better recommendation,
but with additional computational cost. The most time-consuming process is to
find the suitable combination of MF's which has the larger range of values, i.e.
2" where n is the number of MFs to be considered (86 in this case). The use
of MF selection methods can significantly increase the performance, however, is
time-consuming and not appropriate for on-line scenarios where the (initial) HP
settings need to be delivered in real time.

Regarding the number of bins in case of NN-CUP and NN-HIS approaches,
the b parameter, experiments indicate that a tuning is required, since, in general,
there is no clear better choice. However, since the reasonable values to use are
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time in ms (log scale)

2450 18 2 32 41 20 4 35 12 45 13 40 11 5 1 15 30 26 47 43 25 22 19 20 44 9 27 33 8 31 36 49 46 42 6 39 34 21 37 48 7 28 14 33 10 16 23 17 3

dataset id

Fig. 4. MF Extraction times, on a logarithmic scale, for the used datasets and MF
extraction approaches.

the dividers of 100, the tuning has to deal with a small set of values (i.e. 1, 2,
4, 5, 10, 20, 25, 50 and 100) compared to the before mentioned range of 2" for
the possible combinations of MF types. It is also worth to mention that PCA
needs to be performed only once for a dataset to obtain various MF vectors for
different values of b.

Finally, DTW does not need to tune any own HPs what, considering it’s
competitive performance, makes it a good choice for scenarios where HP settings
need to be initialized fast.

5 Conclusions

This paper proposed and investigated a fast approach to HP Initialisation of Ml
algorithms utilizing PCA-MFs and DTW. To the best of authors’ knowledge,
the proposed DTW approach is novel.

The proposed approach was evaluated and compared to various baselines in
the use-case scenario of initialisation of HP for SVM and DT using kNN meta-
learner. Experiments were performed on 50 real-world datasets.

The results showed that the proposed approach presents a good predictive ac-
curacy when compared with various baseline approaches with a run time faster
than the used baselines. Also, the performance of the base-learners using the
initialised HPs are very close to the performance of the base-learners using op-
timized HPs via exhaustive HP tuning approaches.

The proposed DTW approach has no parameters to tune and is sufficiently
accurate and fast to be used in on-line scenarios where HP values need to be
recommended in real time.

Acknowledgment “Application Domain Specific Highly Reliable IT Solutions”
project has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the
Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Sub-
programme) funding scheme.
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