Commutative Algebra: 150 Years with Roger and Sylvia Wiegand (2021)
- Authors:
- Autor USP: PÉREZ, VICTOR HUGO JORGE - ICMC
- Unidade: ICMC
- Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS
- Language: Inglês
- Imprenta:
- Publisher: AMS
- Publisher place: Providence
- Date published: 2021
- Source:
- ISSN: 0271-4132
- Conference titles: International Meeting on Commutative Algebra and Related Areas - SIMCARA
-
ABNT
Commutative Algebra: 150 Years with Roger and Sylvia Wiegand. . Providence: AMS. Disponível em: https://bookstore.ams.org/cdn-1631280359973/conm-773/. Acesso em: 09 jan. 2026. , 2021 -
APA
Commutative Algebra: 150 Years with Roger and Sylvia Wiegand. (2021). Commutative Algebra: 150 Years with Roger and Sylvia Wiegand. Providence: AMS. Recuperado de https://bookstore.ams.org/cdn-1631280359973/conm-773/ -
NLM
Commutative Algebra: 150 Years with Roger and Sylvia Wiegand [Internet]. 2021 ;[citado 2026 jan. 09 ] Available from: https://bookstore.ams.org/cdn-1631280359973/conm-773/ -
Vancouver
Commutative Algebra: 150 Years with Roger and Sylvia Wiegand [Internet]. 2021 ;[citado 2026 jan. 09 ] Available from: https://bookstore.ams.org/cdn-1631280359973/conm-773/ - Multiplicities for arbitrary modules and reduction
- Topological invariants of isolated complete intersection curve singularities
- Milnor numbers and equisingularity of map germs from 'C POT. N+3' to 'C POT. 3'
- Mixed multiplicities for arbitrary ideals and generalized Buchsbaum–Rim multiplicities
- Inverse limit of local homology
- Artinianness and finiteness of formal local cohomology modules with respect to a pair of ideals
- Sobre a equisingularidade e trivialidade topológica de germes em 'ômicron'(3,3)
- Polar multiplicities and equisingularity of map germs from "C POT. 3" to "C POT. 4"
- Coefficient modules and rees polynomials of arbitrary modules
- Graded version of local cohomology with respect to a pair of ideals
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3077449.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
