Machine learning to support geographical origin traceability of Coffea arabica (2022)
- Authors:
- USP affiliated authors: FERNANDES, ELISABETE APARECIDA DE NADAI - CENA ; SARRIES, GABRIEL ADRIAN - ESALQ ; BACCHI, MARCIO ARRUDA - CENA ; MAZOLA, YUNIEL TEJEDA - CENA ; FURLAN, GUSTAVO NAZATO - Interunidades em Ecologia Aplicada
- Unidades: CENA; ESALQ; Interunidades em Ecologia Aplicada
- DOI: 10.54364/AAIML.2022.1118
- Subjects: APRENDIZADO COMPUTACIONAL; CAFÉ; DENOMINAÇÃO DE ORIGEM
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Advances in Artificial Intelligence and Machine Learning. Research
- Volume/Número/Paginação/Ano: v. 2, n. 1, p. 273-287, 2022
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
FERNANDES, Elisabete A. De Nadai et al. Machine learning to support geographical origin traceability of Coffea arabica. Advances in Artificial Intelligence and Machine Learning. Research, v. 2, n. 1, p. 273-287, 2022Tradução . . Disponível em: https://doi.org/10.54364/AAIML.2022.1118. Acesso em: 29 dez. 2025. -
APA
Fernandes, E. A. D. N., Sarries, G. A., Mazola, Y. T., Lima, R. C., Furlan, G. N., & Bacchi, M. A. (2022). Machine learning to support geographical origin traceability of Coffea arabica. Advances in Artificial Intelligence and Machine Learning. Research, 2( 1), 273-287. doi:10.54364/AAIML.2022.1118 -
NLM
Fernandes EADN, Sarries GA, Mazola YT, Lima RC, Furlan GN, Bacchi MA. Machine learning to support geographical origin traceability of Coffea arabica [Internet]. Advances in Artificial Intelligence and Machine Learning. Research. 2022 ; 2( 1): 273-287.[citado 2025 dez. 29 ] Available from: https://doi.org/10.54364/AAIML.2022.1118 -
Vancouver
Fernandes EADN, Sarries GA, Mazola YT, Lima RC, Furlan GN, Bacchi MA. Machine learning to support geographical origin traceability of Coffea arabica [Internet]. Advances in Artificial Intelligence and Machine Learning. Research. 2022 ; 2( 1): 273-287.[citado 2025 dez. 29 ] Available from: https://doi.org/10.54364/AAIML.2022.1118 - Pet food categorization by neutron activation analysis and data science
- Discriminating beef producing countries by multi-element analysis and machine learning
- Neutron activation analysis and data mining techniques to discriminate beef cattle feed
- Trace elements and machine learning for Brazilian beef traceability
- Elemental profile of dietary supplements and agricultural byproducts evaluated by neutron activation analysis
- Neutron activation analysis and data mining techniques to discriminate between beef cattle diets
- Avaliação da homogeneidade de um lote de arroz integral candidato a material de referência
- Elemental characterization of Brazilian beans using neutron activation analysis
- Elemental profile of tail hair to evaluate nutritional status of Angus, Nelore and Wagyu cattle breeds
- Stability of sodium mass fraction in agricultural certified reference materials
Informações sobre o DOI: 10.54364/AAIML.2022.1118 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3075544-Machine learning ... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
