Exportar registro bibliográfico


Metrics:

Immune spleen cells attenuate the inflammatory profile of the mesenteric perivascular adipose tissue in obese mice (2021)

  • Authors:
  • USP affiliated authors: EICHLER, ROSANGELA APARECIDA DOS SANTOS - ICB ; RODRIGUES, STEPHEN FERNANDES DE PAULA - ICB ; CARVALHO, MARIA HELENA CATELLI DE - ICB ; FOCK, RICARDO AMBROSIO - FCF ; AKAMINE, ELIANA HIROMI - ICB
  • Unidades: ICB; FCF
  • DOI: 10.1038/s41598-021-90600-0
  • Subjects: TECIDO ADIPOSO; BAÇO; INFLAMAÇÃO; FARMACOLOGIA; DIETA ANIMAL; CITOMETRIA DE FLUXO; CITOCINAS; QUIMIOTAXIA DE LEUCÓCITO; OBESIDADE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaAcesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-021-90600-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão Publicada3032026.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Renée de Nazaré Oliveira da; EICHLER, Rosangela Aparecida dos Santos; DIAS, Carolina; et al. Immune spleen cells attenuate the inflammatory profile of the mesenteric perivascular adipose tissue in obese mice. Scientifc Reports, London, v. 11, p. 1-11 art. 11153, 2021. Disponível em: < https://dx.doi.org/10.1038/s41598-021-90600-0 > DOI: 10.1038/s41598-021-90600-0.
    • APA

      Silva, R. de N. O. da, Eichler, R. A. dos S., Dias, C., Rodrigues, S. F. de P., Skiba, D. S., Landgraf, R. G., et al. (2021). Immune spleen cells attenuate the inflammatory profile of the mesenteric perivascular adipose tissue in obese mice. Scientifc Reports, 11, 1-11 art. 11153. doi:10.1038/s41598-021-90600-0
    • NLM

      Silva R de NO da, Eichler RA dos S, Dias C, Rodrigues SF de P, Skiba DS, Landgraf RG, Carvalho MHC de, Guzik T, Fock RA, Akamine EH. Immune spleen cells attenuate the inflammatory profile of the mesenteric perivascular adipose tissue in obese mice [Internet]. Scientifc Reports. 2021 ; 11 1-11 art. 11153.Available from: https://dx.doi.org/10.1038/s41598-021-90600-0
    • Vancouver

      Silva R de NO da, Eichler RA dos S, Dias C, Rodrigues SF de P, Skiba DS, Landgraf RG, Carvalho MHC de, Guzik T, Fock RA, Akamine EH. Immune spleen cells attenuate the inflammatory profile of the mesenteric perivascular adipose tissue in obese mice [Internet]. Scientifc Reports. 2021 ; 11 1-11 art. 11153.Available from: https://dx.doi.org/10.1038/s41598-021-90600-0

    Referências citadas na obra
    Nosalski, R. & Guzik, T. J. Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 174, 3496–3513 (2017).
    Brown, N. K. et al. Perivascular adipose tissue in vascular function and disease: A review of current research and animal models. Arterioscler. Thromb. Vasc. Biol. 34, 1621–1630 (2014).
    da Costa, R. M. et al. TNF-alpha induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice. Cardiovasc. Diabetol. 15, 119. https://doi.org/10.1186/s12933-016-0443-0 (2016).
    Chatterjee, T. K. et al. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding. Circ. Res. 104, 541–549 (2009).
    Henrichot, E. et al. Production of chemokines by perivascular adipose tissue: A role in the pathogenesis of atherosclerosis?. Arterioscler. Thromb. Vasc. Biol. 25, 2594–2599 (2005).
    Trottier, M. D., Naaz, A., Li, Y. & Fraker, P. J. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl. Acad. Sci. USA 109, 7622–7629 (2012).
    Steiniger, B. S. Human spleen microanatomy: Why mice do not suffice. Immunology 145, 334–346 (2015).
    Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).
    Gotoh, K. et al. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced hypothalamic inflammation. J. Neurochem. 120, 752–764 (2012).
    Gotoh, K. et al. A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced inflammation in white adipose tissue and liver. Diabetes 61, 1994–2003 (2012).
    Inoue, M. et al. Role of the spleen in the development of steatohepatitis in high-fat-diet-induced obese rats. Exp. Biol. Med. (Maywood) 237, 461–470 (2012).
    Wu, L., Parekh, V. V., Hsiao, J., Kitamura, D. & Kaer, L. V. Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance. Proc. Natl. Acad. Sci. USA 111, E4638–E4647 (2014).
    Leite, N. C. et al. Splenectomy attenuates obesity and decreases insulin hypersecretion in hypothalamic obese rats. Metabolism 64, 1122–1133 (2015).
    Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).
    Jo, J. et al. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324. https://doi.org/10.1371/journal.pcbi.1000324 (2009).
    Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).
    Tsao, T. S. et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem. 278, 50810–50817 (2003).
    Tsao, T. S., Lodish, H. F. & Frubis, J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 440, 213–221 (2002).
    Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).
    Bussey, C. E., Withers, S. B., Aldous, R. G., Edwards, G. & Heagerty, A. M. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler. Thromb. Vasc. Biol. 36, 1377–1385 (2016).
    Xi, N. & Li, H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br. J. Pharmacol. 174, 3425–3442 (2017).
    Adler, B. J., Green, D. E., Pagnotti, G. M., Chan, M. E. & Rubin, C. T. High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS ONE 9, e90639. https://doi.org/10.1371/journal.pone.0090639 (2014).
    Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).
    Yu, Y. et al. Recent advances in CD8(+) regulatory T cell research. Oncol. Lett. 15, 8187–8194 (2018).
    Chen, Z. et al. seq-ImmuCC: Cell-centric view of tissue transcriptome measuring cellular compositions of immune microenvironment from mouse RNA-seq data. Front. Immunol. 9, 1286. https://doi.org/10.3389/fimmu.2018.01286 (2018).
    Tracy, E. T. et al. Partial splenectomy but not total splenectomy preserves immunoglobulin M memory B cells in mice. J. Pediatr. Surg. 46, 1706–1710 (2011).
    Rosado, M. M. et al. Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: Tailoring better vaccination strategies. Eur. J. Immunol. 43, 2659–2670 (2013).
    Cameron, P. U. et al. Splenectomy associated changes in IgM memory B cells in an adult spleen registry cohort. PLoS ONE 6, e23164. https://doi.org/10.1371/journal.pone.0023164 (2011).
    Kim, M. T. & Harty, J. T. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T-cells. Front. Immunol. 5, 568. https://doi.org/10.3389/fimmu.2014.00568 (2014).
    Oh, D. Y., Morinaga, H., Talukdar, S., Bae, E. J. & Olefsky, J. M. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61, 346–354 (2012).
    Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).
    Nishimura, S. et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 18, 759–766 (2013).
    Gu, X. et al. Obesity enhances antioxidant capacity and reduces cytokine levels of the spleen in mice to resist splenic injury challenged by Escherichia coli. J. Immunol. Res. 2020, 5948256. https://doi.org/10.1155/2020/5948256 (2020).
    Beesetty, P. et al. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci. Rep. 8, 3023. https://doi.org/10.1038/s41598-018-21004-w (2018).
    Police, S. B., Thatcher, S. E., Charnigo, R., Daugherty, A. & Cassis, L. A. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 29, 1458–1464 (2009).
    Nicholson, A. et al. Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide tanshydrogenase (Nnt) Gene. Obesity 18, 1902–1905 (2010).
    Siersbaek, M. S. et al. C57BL/6J substrain differences in response to high-fat diet intervention. Sci. Rep. 10, 14052. https://doi.org/10.1038/s41598-020-70765-w (2020).
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).
    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, 2002–2007 (2001).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021