Periodic positive solutions of superlinear delay equations via topological degree (2021)
- Authors:
- Autor USP: BENEVIERI, PIERLUIGI - IME
- Unidade: IME
- DOI: 10.1098/rsta.2019.0373
- Assunto: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO
- Keywords: differential delay equations; superlinear problems; coincidence degree
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- ISSN: 1364-503X
- Volume/Número/Paginação/Ano: v. 379, n. 2191, p. 1,18, 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
AMSTER, Pablo e BENEVIERI, Pierluigi e HADDAD, Julián. Periodic positive solutions of superlinear delay equations via topological degree. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 379, n. 2191, p. 1, 2021Tradução . . Disponível em: https://doi.org/10.1098/rsta.2019.0373. Acesso em: 10 jan. 2026. -
APA
Amster, P., Benevieri, P., & Haddad, J. (2021). Periodic positive solutions of superlinear delay equations via topological degree. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379( 2191), 1. doi:10.1098/rsta.2019.0373 -
NLM
Amster P, Benevieri P, Haddad J. Periodic positive solutions of superlinear delay equations via topological degree [Internet]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021 ; 379( 2191): 1.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1098/rsta.2019.0373 -
Vancouver
Amster P, Benevieri P, Haddad J. Periodic positive solutions of superlinear delay equations via topological degree [Internet]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021 ; 379( 2191): 1.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1098/rsta.2019.0373 - Persistent eigenvalues and eigenvectors of a perturbed fredholm operator
- Continuation results for retarded functional differential equations on manifolds
- On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree
- Global continuation of forced oscillations of retarded motion equations on manifolds
- A continuation result for forced oscillations of constrained motion problems with infinite delay
- On the existence of forced oscillations of retarded functional motion equations on a class of topologically nontrivial manifolds
- Eigenvalue problems for Fredholm operators with set-valued perturbations
- On general properties of N-th order retarded functional di erential equations
- An infinite dimensional version of the intermediate value theorem
- On general properties of retarded functional differential equations on manifolds
Informações sobre o DOI: 10.1098/rsta.2019.0373 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3018821.pdf | |||
| 3018821.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
