Exportar registro bibliográfico


Metrics:

Antiproliferative and cytotoxic effects of Schinus terebinthifolia leaf extract on thyroid follicular cells (2020)

  • Authors:
  • USP affiliated authors: NUNES, MARIA TEREZA - ICB ; OLINTO, SILVIA CRISTINA FIGUEIRA - ICB ; SILVEIRA, JAMILE CALIL - ICB ; DIAS, RAFAEL BENJAMIN ARAÚJO - ICB ; VALLE, MAÍRA MELLO REZENDE - ICB ; NASCIMENTO, CAROLINE SERRANO DO - ICB
  • Unidade: ICB
  • DOI: 10.1007/s43450-020-00098-2
  • Subjects: FISIOLOGIA; EXTRATOS (FORMAS FARMACÊUTICAS); GLÂNDULA TIREOIDE; FARMACOGNOSIA; PLANTAS MEDICINAIS; ESTRESSE OXIDATIVO; AROEIRA; ÁRVORES FLORESTAIS; TOXICIDADE DO SOLO; INFLAMAÇÃO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s43450-020-00098-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVIA CRISTINA FIGUEIRA OLINTO,; CALIL-SILVEIRA, Jamile; DIAS, Rafael B. A.; et al. Antiproliferative and cytotoxic effects of Schinus terebinthifolia leaf extract on thyroid follicular cells. Revista Brasileira de Farmacognosia, João Pessoa, v. 30, p. 693-700, 2020. Disponível em: < https://doi.org/10.1007/s43450-020-00098-2 > DOI: 10.1007/s43450-020-00098-2.
    • APA

      Silvia Cristina Figueira Olinto,, Calil-Silveira, J., Dias, R. B. A., Valle, M. M. R., Serrano-Nascimento, C., Rocha, P. S., et al. (2020). Antiproliferative and cytotoxic effects of Schinus terebinthifolia leaf extract on thyroid follicular cells. Revista Brasileira de Farmacognosia, 30, 693-700. doi:10.1007/s43450-020-00098-2
    • NLM

      Silvia Cristina Figueira Olinto, Calil-Silveira J, Dias RBA, Valle MMR, Serrano-Nascimento C, Rocha PS, Monteiro-Alfredo T, Santos EL dos, Souza K de P, Nunes MT. Antiproliferative and cytotoxic effects of Schinus terebinthifolia leaf extract on thyroid follicular cells [Internet]. Revista Brasileira de Farmacognosia. 2020 ; 30 693-700.Available from: https://doi.org/10.1007/s43450-020-00098-2
    • Vancouver

      Silvia Cristina Figueira Olinto, Calil-Silveira J, Dias RBA, Valle MMR, Serrano-Nascimento C, Rocha PS, Monteiro-Alfredo T, Santos EL dos, Souza K de P, Nunes MT. Antiproliferative and cytotoxic effects of Schinus terebinthifolia leaf extract on thyroid follicular cells [Internet]. Revista Brasileira de Farmacognosia. 2020 ; 30 693-700.Available from: https://doi.org/10.1007/s43450-020-00098-2

    Referências citadas na obra
    Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–78. https://doi.org/10.1016/S0899-9007(01)00695-5
    Bortolotto LF, Barbosa FR, Silva G, Bitencourt TA, Beleboni RO, Baek SJ et al (2017) Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed Pharmacother 85:425–433. https://doi.org/10.1016/j.biopha.2016.11.047
    Brent GA (2012) Mechanisms of thyroid hormone action. J Clin Invest 122:3035–3043. https://doi.org/10.1172/JCI60047
    Bunker SK, Dutta A, Pradhan J, Dandapat J, Chainy GBN (2019) Curcumin restore hepatic epigenetic changes in propylthiouracil (PTU) induced hypothyroid male rats: a study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 123:169–180. https://doi.org/10.1016/j.fct.2018.10.050
    Calil-Silveira J, Serrano-Nascimento C, Nunes MT (2012) Iodide treatment acutely increases pendrin (SLC226A4) mRNA expression in the rat thyroid and the PCCl3 thyroid cell line by transcriptional mechanisms. Mol Cell Endocrinol 350:118–124. https://doi.org/10.1152/ajpcell.00210.2015
    Carlini EA, Duarte-Almeida JM, Rodrigues E, Tabach R (2010) Antiulcer effect of the pepper trees Schinus terebinthifolius Raddi (aroeira-da-praia) and Myracrodruon urundeuva Allemao, Anacardiaceae (aroeira-do-sertao). Rev Bras 20:140–146. https://doi.org/10.1590/S0102-695X2010000200001
    Carvalho MG, Melo AGN, Aragão CFS, Raffin FN, Moura TFAL (2013) Schinus terebinthifolius Raddi: composição química, propriedades biológicas, e toxicidade. Rev. Bras. Pl Med 15:158–168. https://doi.org/10.1590/S1516-05722013000100022
    Carvalho DO, Freitas J, Nogueira P, Henriques SN, Carmo AM, Castro MA, Guido LF (2018) Xanthohumol inhibits cell proliferation and induces apoptosis in human thyroid cells. Food Chem Toxicol 121:450–457. https://doi.org/10.1016/j.fct.2018.09.021
    Cruz GL (1982) Aroeira In: Dicionário das Plantas Úteis do Brasil, 2ª edn. Civilização Brasileira, Rio de Janeiro, pp 70–72
    Cunha Lima ST, Rodrigues ED, Melo T, Nascimento AF, Guedes MLS, Cruz T, Alves C, Meyer R, Toralles MB (2008) Survey of the medicinal flora used for the treatment of metabolic diseases in Salvador. Bahia State – Brazil Rev Bras Pl Med 10:83–89.  https://www.researchgate.net/publication/237283689
    De Lima MR, De Souza LJ, Dos Santos AF, De Andrade MC, Sant’ Ana AE, Genet JP, Marquez B, Neuville L, Moreau N (2006) Anti-bacterial activity of some Brazilian medicinal plants. J Ethnopharmacol 105:137–147. https://doi.org/10.1016/j.jep.2005.10.026
    Divi RL, Doerge DR (1996) Inhibition of thyroid peroxidase by dietary flavonoids. Chem Res Toxicol 9:16–23. https://doi.org/10.1021/tx950076m
    Fan P, Xie XH, Chen CH, Peng X, Zhang P, Zhang P, Yang C, Wang YT (2019) Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol 38:10–22. https://doi.org/10.1089/dna.2018.4348
    Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, Kuwano H (2007) Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol 30(3):605–613. https://doi.org/10.3892/ijo.30.3.605
    Ferreira AC, Lisboa PC, Oliveira KJ, Lima LP, Barros IA, Carvalho DP (2002) Inhibition of thyroid type 1 deiodinase activity by flavonoids. Food Chem Toxicol 4:913–917. https://doi.org/10.1016/s0278-6915(02)00064-9
    Ferreira AC, Neto JC, Da Silva AC, Kuster RM, Carvalho DP (2006) Inhibition of thyroid peroxidase by Myrcia uniflora flavonoids. Chem Res Toxicol 3:351–355. https://doi.org/10.1021/tx0501684
    Fortunato RS, Ferreira AC, Hecht F, Dupuy C, Carvalho DP (2014) Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? J Endocrinol 221:31–40. https://doi.org/10.1530/JOE-13-0588
    Gaitan E, Lindsay RH, Reichert R, Ingbar SH, Cooksey RC, Legan J, Meydrech EF, Hill J, Kubota K (1989) Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones. J Clin Endocrinol Metab 68:707–714. https://doi.org/10.1210/jcem-68-4-707
    Giuliani C, Bucci I, Di Santo S, Rossi C, Grassadonia A, Piantelli M, Monaco F, Napolitano G (2014) The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function. Food Chem Toxicol 66:23–29. https://doi.org/10.1016/j.fct.2014.01.016
    Giuliani C, Iezzi M, Ciolli L, Hysi A, Bucci I, Di Santo S, Rossi C, Zucchelli M, Napolitano G (2017) Resveratrol has anti-thyroid effects both in vitro and in vivo. Food Chem Toxicol 107:237–247. https://doi.org/10.1016/j.fct.2017.06.044
    Gonçalves CF, Santos MC, Ginabreda MG, Fortunato RS, Carvalho DP, Freitas Ferreira AC (2013) Flavonoid rutin increases thyroid iodide uptake in rats. PLoS One 8:e73908. https://doi.org/10.1371/journal.pone.0073908
    Jo S, Ha TK, Han SH, Kim ME, Jung I, Lee HW, Bae SK, Lee JS (2017) Myricetin induces apoptosis of human anaplastic thyroid cancer cells via mitochondria dysfunction. Anticancer Res 37:1705–1710. https://doi.org/10.21873/anticanres.11502
    Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163
    Kristanc L, Kreft S (2016) European medicinal and edible plants associated with subacute and chronic toxicity part II: plants with hepato-, neuro-, nephro- and immunotoxic effects. Food Chem Toxicol 92:38–49. https://doi.org/10.1016/j.fct.2016.03.014
    Lenzi M, Orth AI (2004) Caracterização funcional do sistema reprodutivo da aroeira-vermelha (Schinus terebinthifolius Raddi), em Florianópolis-SC, Brasil. Rev Bras Frutic 26:198–201. https://doi.org/10.1590/S0100-29452004000200004
    Lindsay RH, Gaitan E, Cooksey RC (1989) Pharmacokinetics and intrathyroidal effects of flavonoids. In: Gaitan E (eds) Environmental goitrogenesis. Boca Roton. pp 43-56.
    Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JA, Massaoka MH, Travassos LR, Sartorelli P, Lago JH (2011) α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun 411:449–454. https://doi.org/10.1016/j.bbrc.2011.06.176
    Miler M, Jarić I, Živanović J, Ajdžanović V, Tanić N, Milošević V, Šošić-Jurjević B (2017) Citrus flavanones mildly interfere with pituitary-thyroid axis in old-aged male rats. Acta Histochem 119:292–301. https://doi.org/10.1016/j.acthis.2017.02.005
    Nocchi SR, De Moura-Costa GF, Novello CR, Rodrigues J, Longhini R, De Mello JC, Filho BP, Nakamura CV, Ueda-Nakamura T (2016) In vitro cytotoxicity and anti-herpes simplex virus type 1 activity of hydroethanolic extract, fractions, and isolated compounds from stem bark of Schinus terebinthifolius Raddi. Pharmacogn Mag 12:160–164. https://doi.org/10.4103/0973-1296.177903
    Queries LC, Fauvel-Lafètve F, Terry S, De la Taille A, Kouyoumdjian JC, Chopin DK, Vacherot F, Rodrigues LE, Crépin M (2006) Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius Raddi) induce apoptotic and autophagic cell death of DU145 cells. Anticancer Res 26:379–387
    Rocha PDSD, Campos JF, Nunes-Souza V, Vieira MDC, Boletia APA, Rabelo LA, Dos Santos EL, De Picoli SK (2018) Antioxidant and protective effects of Schinus terebinthifolius Raddi against doxorubicin-induced toxicity. Appl Biochem Biotechnol 184:869–884. https://doi.org/10.1007/s12010-017-2589-y
    Rocha PDSD, Boleti APA, Vieira MC, Carollo CA, Silva DB, Estevinho LM, Santos EL, Souza KP (2019) Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comp Biochem Physiol C 220:36–46. https://doi.org/10.1016/j.cbpc.2019.02.007
    Santana JS, Sartorelli P, Lago JHG (2012) Isolamento e avaliação do potencial citotóxico de derivados fenólicos de Schinus terebinthifolius Raddi (Anacardiaceae). Quim Nova 35:2245–2248. https://doi.org/10.1590/S0100-40422012001100029
    Santos MCS, Gonçalves CF, Vaisman M, Ferreira AC, de Carvalho DP (2011) Impact of flavonoids on thyroid function. Food Chem Toxicol 49:2495–2502. https://doi.org/10.1016/j.fct.2011.06.074
    Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A (2019) Leukemia therapy by flavonoids: future and involved mechanisms. J Cell Physiol 234(6):8203–8220. https://doi.org/10.1002/jcp.27628
    Sartelet H, Serghat S, Lobstein A, Ingenbleek Y, Anton R, Petitfrere E, Aguie-Aguie G, Martiny L, Haye B (1996) Flavonoids extracted from Fonio millet (Digitaria exilis) reveal potent antithyroid properties. Nutrition 12:100–106. https://doi.org/10.1016/0899-9007(96)90707-8
    Schweizer U, Chiu J, Kohrle J (2008) Peroxides and peroxide-degrading enzymes in the thyroid. Antioxid Redox Signal 10:1577–1592. https://doi.org/10.1089/ars.2008.2054
    Serrano-Nascimento C, Nicola JP, Teixeira SS, Poyares LL, Lellis-Santos C, Bordin S, Masini-Repiso AM, Nunes MT (2016) Excess iodide downregulates Na+/I− symporter gene transcription through activation of PI3K/Akt pathway. Mol Cell Endocrinol 426:73–90. https://doi.org/10.1016/j.mce.2016.02.006
    Sgarbieri VC, Pacheco MTB (1999) Revisão: alimentos funcionais fisiológicos. Braz J Food Technol 2:7–19
    Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418. https://doi.org/10.1023/A:1009616228304
    Turolla MS, Nascimento ES (2006) Informações toxicológicas de alguns fitoterápicos utilizados no Brasil. Rev. Bras Cien Farm 42:289–306. https://doi.org/10.1590/S1516-93322006000200015
    Wang K, Zhu X, Zhang K, Zhu L, Zhou F (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol 28(9):387–393. https://doi.org/10.1002/jbt.21575
    Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, Guan H, Yu H, Sun Z (2015) Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct 6:3464–3472. https://doi.org/10.1039/c5fo00671f

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021