The accuracy of the patient health questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis (2020)
- Authors:
- He, Chen
- Levis, Brooke
- Riehm, Kira E.
- Saadat, Nazanin
- Levis, Alexander W.
- Azar, Marleine
- Rice, Danielle B.
- Krishnan, Ankur
- Wu, Yin
- Sun, Ying
- Imran, Mahrukh
- Boruff, Jill

- Cuijpers, Pim

- Gilbody, Simon

- Ioannidis, John P. A.
- Kloda, Lorie A.

- McMillan, Dean
- Patten, Scott B.

- Shrier, Ian
- Ziegelstein, Roy C.
- Akena, Dickens H.
- Arroll, Bruce
- Ayalon, Liat

- Baradaran, Hamid R.
- Baron, Murray
- Beraldi, Anna
- Bombardier, Charles H.

- Butterworth, Peter

- Carter, Gregory
- Chagas, Marcos Hortes Nisihara

- Chan, Juliana C. N.
- Cholera, Rushina
- Clover, Kerrie

- Conwell, Yeates

- de Man-van Ginkel, Janneke M.
- Fann, Jesse R.
- Fischer, Felix H.
- Fung, Daniel
- Gelaye, Bizu

- Goodyear-Smith, Felicity

- Greeno, Catherine G.
- Hall, Brian J.
- Harrison, Patricia A.
- Härter, Martin

- Hegerl, Ulrich
- Hides, Leanne

- Hobfoll, Stevan E.
- Hudson, Marie
- Hyphantis, Thomas N.

- Inagaki, Masatoshi
- Ismail, Khalida

- Jetté, Nathalie
- Khamseh, Mohammad E.
- Kiely, Kim M.
- Kwan, Yunxin
- Lamers, Femke

- Liu, Shen-Ing
- Lotrakul, Manote

- Loureiro, Sonia Regina

- Löwe, Bernd

- Marsh, Laura
- McGuire, Anthony
- Mohd-Sidik, Sherina

- Munhoz, Tiago N.
- Muramatsu, Kumiko
- Osório, Flávia de Lima

- Patel, Vikram
- Pence, Brian W.

- Persoons, Philippe

- Picardi, Angelo
- Reuter, Katrin
- Rooney, Alasdair G.
- Santos, Iná da Silva dos

- Shaaban, Juwita
- Sidebottom, Abbey
- Simning, Adam

- Stafford, Lesley

- Sung, Sharon
- Tan, Pei Lin Lynnette
- Turner, Alyna
- van Weert, Henk C. P. M.
- White, Jennifer
- Whooley, Mary A.
- Winkley, Kirsty

- Yamada, Mitsuhiko
- Thombs, Brett D.

- Benedetti, Andrea
- USP affiliated authors: LOUREIRO, SONIA REGINA - FMRP ; OSORIO, FLAVIA DE LIMA - FMRP
- Unidade: FMRP
- DOI: 10.1159/000502294
- Subjects: DEPRESSÃO; PSICODIAGNÓSTICO; QUESTIONÁRIOS; TRIAGEM
- Keywords: Depression; Diagnostic accuracy; Meta-analysis; Patient health questionnaire-9; Screening
- Agências de fomento:
- Financiado pelo CIHR
- Financiada pela University of Washington
- Financiado pelo BCM (Baylor College of Medicine)
- Financiado pela University of Michigan
- Financiado pela ARC
- Financiado pelo NIMH (United States National Institute of Mental Health)
- Financiado pelo NIH (United States National Institutes of Health)
- Financiado pelo CDC (Centers for Disease Control and Prevention)
- Financiada pelo Federal Ministry of Education and Research of German
- Financiado pela University of Macau
- Financiado pelo CIHR
- Financiada pela NHMRC (National Health and Medical Research Council)
- Financiado pela Netherlands Organisation for Health Research and Development
- Financiado pelo NIHR
- Financiado pela Mahidol University
- Financiado pelo CNPq
- Financiado pelo NAP-PRP USP
- Financiado pelo Santander Universidades
- Financiado pelo HHS (United States Department of Health and Human Services)
- Financiada pela AHRQ (Agency for Healthcare Research and Quality)
- Financiado pelo NCRR (National Center for Research Resources)
- Financiado pelo NHLBI (National Heart Lung and Blood Institute)
- Language: Inglês
- Imprenta:
- Source:
- Título: Psychotherapy and Psychosomatics
- ISSN: 0033-3190
- Volume/Número/Paginação/Ano: v. 89, n. 1 , p. 25-37, 2020
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: public-domain
-
ABNT
HE, Chen et al. The accuracy of the patient health questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis. Psychotherapy and Psychosomatics, v. 89, n. 1 , p. 25-37, 2020Tradução . . Disponível em: https://doi.org/10.1159/000502294. Acesso em: 27 dez. 2025. -
APA
He, C., Levis, B., Riehm, K. E., Saadat, N., Levis, A. W., Azar, M., et al. (2020). The accuracy of the patient health questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis. Psychotherapy and Psychosomatics, 89( 1 ), 25-37. doi:10.1159/000502294 -
NLM
He C, Levis B, Riehm KE, Saadat N, Levis AW, Azar M, Rice DB, Krishnan A, Wu Y, Sun Y, Imran M, Boruff J, Cuijpers P, Gilbody S, Ioannidis JPA, Kloda LA, McMillan D, Patten SB, Shrier I, Ziegelstein RC, Akena DH, Arroll B, Ayalon L, Baradaran HR, Baron M, Beraldi A, Bombardier CH, Butterworth P, Carter G, Chagas MHN, Chan JCN, Cholera R, Clover K, Conwell Y, de Man-van Ginkel JM, Fann JR, Fischer FH, Fung D, Gelaye B, Goodyear-Smith F, Greeno CG, Hall BJ, Harrison PA, Härter M, Hegerl U, Hides L, Hobfoll SE, Hudson M, Hyphantis T N, Inagaki M, Ismail K, Jetté N, Khamseh ME, Kiely KM, Kwan Y, Lamers F, Liu S-I, Lotrakul M, Loureiro SR, Löwe B, Marsh L, McGuire A, Mohd-Sidik S, Munhoz TN, Muramatsu K, Osório F de L, Patel V, Pence BW, Persoons P, Picardi A, Reuter K, Rooney AG, Santos I da S dos, Shaaban J, Sidebottom A, Simning A, Stafford L, Sung S, Tan PLL, Turner A, van Weert HCPM, White J, Whooley MA, Winkley K, Yamada M, Thombs BD, Benedetti A. The accuracy of the patient health questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis [Internet]. Psychotherapy and Psychosomatics. 2020 ; 89( 1 ): 25-37.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1159/000502294 -
Vancouver
He C, Levis B, Riehm KE, Saadat N, Levis AW, Azar M, Rice DB, Krishnan A, Wu Y, Sun Y, Imran M, Boruff J, Cuijpers P, Gilbody S, Ioannidis JPA, Kloda LA, McMillan D, Patten SB, Shrier I, Ziegelstein RC, Akena DH, Arroll B, Ayalon L, Baradaran HR, Baron M, Beraldi A, Bombardier CH, Butterworth P, Carter G, Chagas MHN, Chan JCN, Cholera R, Clover K, Conwell Y, de Man-van Ginkel JM, Fann JR, Fischer FH, Fung D, Gelaye B, Goodyear-Smith F, Greeno CG, Hall BJ, Harrison PA, Härter M, Hegerl U, Hides L, Hobfoll SE, Hudson M, Hyphantis T N, Inagaki M, Ismail K, Jetté N, Khamseh ME, Kiely KM, Kwan Y, Lamers F, Liu S-I, Lotrakul M, Loureiro SR, Löwe B, Marsh L, McGuire A, Mohd-Sidik S, Munhoz TN, Muramatsu K, Osório F de L, Patel V, Pence BW, Persoons P, Picardi A, Reuter K, Rooney AG, Santos I da S dos, Shaaban J, Sidebottom A, Simning A, Stafford L, Sung S, Tan PLL, Turner A, van Weert HCPM, White J, Whooley MA, Winkley K, Yamada M, Thombs BD, Benedetti A. The accuracy of the patient health questionnaire-9 algorithm for screening to detect major depression: an individual participant data meta-analysis [Internet]. Psychotherapy and Psychosomatics. 2020 ; 89( 1 ): 25-37.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1159/000502294 - SDQ: discriminative validity and diagnostic potential
- Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: a systematic review and individual participant data meta-analysis
- Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis
- Selective cutoff reporting in studies of diagnostic test accuracy: a comparison of conventional and individual-patient-data meta-analyses of the patient health questionnaire-9 depression screening tool
- A case study of an individual participant data meta-analysis of diagnostic accuracy showed that prediction regions represented heterogeneity well
- Percepção do apoio social de famílias que convivem com a depressão materna
- Can the liebowitz social anxiety scale - self-report version be used to differentiate clinical and non-clinical sad groups among Brazilians?
- External validation of a shortened screening tool using individual participant data meta-analysis: a case study of the Patient Health Questionnaire-Dep-4
- Comparison of patient health questionnaire-9, edinburgh postnatal depression scale and hospital anxiety and depression – depression subscale scores by administration mode: an individual participant data differential item functioning meta-analysis
- Validation of the state version of the Self-Statement during Public Speaking scale
Informações sobre o DOI: 10.1159/000502294 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003004766.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas