Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution (2020)
- Authors:
- USP affiliated authors: CANCHO, VICENTE GARIBAY - ICMC ; SUZUKI, ADRIANO KAMIMURA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.cam.2019.112362
- Subjects: INFERÊNCIA BAYESIANA; MÉTODO DE MONTE CARLO; CADEIAS DE MARKOV; ANÁLISE DE SOBREVIVÊNCIA
- Keywords: Cure rate models; Competing risks; Power series distribution; Spatial frailty; Influence diagnostics
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Computational and Applied Mathematics
- ISSN: 0377-0427
- Volume/Número/Paginação/Ano: v. 364, p. 1-15, 2020
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
YIQI, Bao et al. Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution. Journal of Computational and Applied Mathematics, v. 364, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2019.112362. Acesso em: 03 dez. 2025. -
APA
Yiqi, B., Cancho, V. G., Dey, D. K., Balakrishnan, N., & Suzuki, A. K. (2020). Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution. Journal of Computational and Applied Mathematics, 364, 1-15. doi:10.1016/j.cam.2019.112362 -
NLM
Yiqi B, Cancho VG, Dey DK, Balakrishnan N, Suzuki AK. Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution [Internet]. Journal of Computational and Applied Mathematics. 2020 ; 364 1-15.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1016/j.cam.2019.112362 -
Vancouver
Yiqi B, Cancho VG, Dey DK, Balakrishnan N, Suzuki AK. Power series cure rate model for spatially correlated interval-censored data based on generalized extreme value distribution [Internet]. Journal of Computational and Applied Mathematics. 2020 ; 364 1-15.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1016/j.cam.2019.112362 - Bayesian analysis of Birnbaum-Saunders survival model with cure fraction under a variety of activation mechanism
- Bayesian survival model for lifetime with long-term survivors in presence of unobserved heterogeneity
- On estimation and influence diagnostics for a bivariate promotion lifetime model based on the FGM Copula: a fully bayesian computation
- A bayesian destructive generalized Waring regression cure model with a variance decomposition and application in colorectal cancer data
- A new destructive Poisson odd log-logistic generalized half-normal cure rate model
- Semi-parametric cure rate proportional odds models with spatial frailties for interval-censored data
- D-Measure: a bayesian model selection criterion for survival data
- The FGM long-term bivariate survival copula model: modeling, bayesian estimation, and case influence diagnostics
- A multivariate survival model induced by discrete frailty
- A general long-term aging model with different underlying activation mechanism: modeling, bayesian estimation, and case influence diagnostics
Informações sobre o DOI: 10.1016/j.cam.2019.112362 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2956468.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
