Exportar registro bibliográfico


Metrics:

Identification of selection signatures involved in performance traits in a paternal broiler line (2019)

  • Authors:
  • USP affiliated authors: COUTINHO, LUIZ LEHMANN - ESALQ ; ALMEIDA, OCTÁVIO AUGUSTO COSTA - ESALQ ; MOREIRA, GABRIEL COSTA MONTEIRO - ESALQ ; NOVAIS, FRANCISCO JOSÉ DE - ESALQ
  • School: ESALQ
  • DOI: 10.1186/s12864-019-5811-1
  • Subjects: FRANGOS DE CORTE; LINHAGENS ANIMAIS; SELEÇÃO ANIMAL; GENOMAS; SEQUENCIAMENTO GENÉTICO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1186/s12864-019-5811-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALMEIDA, Octavio Augusto Costa; MOREIRA, Gabriel Costa Monteiro; REZENDE, Fernanda Marcondes; et al. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, London, BMC, v. 20, p. 1-20, 2019. Disponível em: < https://doi.org/10.1186/s12864-019-5811-1 > DOI: 10.1186/s12864-019-5811-1.
    • APA

      Almeida, O. A. C., Moreira, G. C. M., Rezende, F. M., Boschiero, C., Peixoto, J. de O., Ibelli, A. M. G., et al. (2019). Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 20, 1-20. doi:10.1186/s12864-019-5811-1
    • NLM

      Almeida OAC, Moreira GCM, Rezende FM, Boschiero C, Peixoto J de O, Ibelli AMG, Ledur MC, Novais FJ de, Coutinho LL. Identification of selection signatures involved in performance traits in a paternal broiler line [Internet]. BMC Genomics. 2019 ; 20 1-20.Available from: https://doi.org/10.1186/s12864-019-5811-1
    • Vancouver

      Almeida OAC, Moreira GCM, Rezende FM, Boschiero C, Peixoto J de O, Ibelli AMG, Ledur MC, Novais FJ de, Coutinho LL. Identification of selection signatures involved in performance traits in a paternal broiler line [Internet]. BMC Genomics. 2019 ; 20 1-20.Available from: https://doi.org/10.1186/s12864-019-5811-1

    Referências citadas na obra
    Keller SR, Taylor DR. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett. 2008;11:852–66.
    Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet Nature Publishing Group. 2018;19:220–34.
    Al-Nasser A, Al-Khalaifa H, Al-Saffar A, Khalil F, Al-Bahouh M, Ragheb G, et al. Overview of chicken taxonomy and domestication. Worlds Poult Sci J. 2007;63:285–300.
    Sabeti PCC, Reich DEE, Higgins JMM, Levine HZPZP, Richter DJJ, Schaffner SFF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.
    Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:0446–58.
    Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–95.
    Christofidou P, Nelson CP, Nikpay M, Qu L, Li M, Loley C, et al. Runs of homozygosity: association with coronary artery disease and gene expression in monocytes and macrophages. Am J Hum Genet. 2015;97:228–37.
    Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci. 2007;104:19942–7.
    Orloff MS, Zhang L, Bebek G, Eng C. Integrative genomic analysis reveals extended germline homozygosity with lung cancer risk in the PLCO cohort. PLoS One. 2012;7.
    Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet. 2012;91:275–92.
    Lashmar SF, Visser C, van Marle-Köster E, Muchadeyi FC. Genomic diversity and autozygosity within the SA Drakensberger beef cattle breed. Livest Sci Elsevier BV. 2018;212:111–9.
    Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13.
    Szmatoła T, Gurgul A, Ropka-Molik K, Jasielczuk I, Zabek T, Bugno-Poniewierska M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livest Sci. 2016;188:72–80.
    Zhao F, McParland S, Kearney F, Du L, Berry DP. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol Genetics Selection Evolution. 2015;47:1–12.
    Bosse M, Megens HJ, Madsen O, Paudel Y, Frantz LAF, Schook LB, et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 2012;8.
    Fleming DS, Koltes JE, Markey AD, Schmidt CJ, Ashwell CM, Rothschild MF, et al. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics BMC Genomics. 2016;17:1–16.
    Marchesi JAP, Buzanskas ME, Cantão ME, Ibelli AMG, Peixoto JO, Joaquim LB, et al. Relationship of runs of homozygosity with adaptive and production traits in a paternal broiler line. Animal [internet]. 2017 [cited 2018 mar 24];1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29065939
    Mastrangelo S, Tolone M, Sardina MT, Sottile G, Sutera AM, Di Gerlando R, et al. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genet Sel Evol BioMed Central. 2017;49:1–10.
    Wright S. The genetical structure of populations. Ann Eugenics. 1951;15:323–54.
    Weir BS. Estimating F-statistics : a historical view; 2015. p. 79.
    Lillie M, Sheng ZY, Honaker CF, Andersson L, Siegel PB, Carlborg O. Genomic signatures of 60 years of bidirectional selection for 8-week body weight in chickens. Poult Sci. 2018;97:781–90.
    Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, et al. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics [Internet]. 2018; [cited 2018 Mar 19];19:83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29370772 .
    Venturini GC, Stafuzza NB, Cardoso DF, Baldi F, Ledur MC, Peixoto JO, et al. Association between ACTA1 candidate gene and performance, organs and carcass traits in broilers. Poult Sci. 2015;94:2863–9.
    Nunes BDN, Ramos SB, Savegnago RP, Ledur MC, Nones K, Klein CH, et al. Genetic parameters for body weight, carcass chemical composition and yield in a broiler-layer cross developed for QTL mapping. Genet Mol Biol [Internet] 2011;34:429–34. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3168183&tool=pmcentrez&rendertype=abstract
    Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods [Internet] 2012 [cited 2013 Sep 17];9:357–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3322381&tool=pmcentrez&rendertype=abstract
    Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, et al. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet [Internet]. 2015 [cited 2018 May 5];46:141–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25643900
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. [Internet]. 2007 [cited 2018 Mar 25];81:559–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17701901
    Purcell S. PLINK 1.9. p. https://www.cog-genomics.org/plink2 .
    Ceballos FC, Hazelhurst S, Ramsay M. Assessing runs of homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics BMC Genomics. 2018;19:1–12.
    Zhang Q, Guldbrandtsen B, Bosse M, Lund MS, Sahana G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics BMC Genomics. 2015;16:1–16.
    Peripolli E, Stafuzza NB, Munari DP, Lima ALF, Irgang R, Machado MA, et al. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics BMC Genomics. 2018;19:1–13.
    McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, et al. Runs of homozygosity in European populations. Am J Hum Genet. 2008;83:359–72.
    Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure. Evolution (N. Y). [Internet]. Society for the Study of Evolution; 1984 [cited 2017 Nov 7]; 38:1358. Available from: http://www.jstor.org/stable/2408641?origin=crossref
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.
    Yu G. Using meshes for MeSH term enrichment and semantic analyses. Bioinformatics. 2018;34:3766–7.
    Morota G. R package for MeSH enrichment analysis - GitHub. https://github.com/morota/meshr . 2014.
    Team RDC. R: a language and environment for statistical computing. 2008. p. https://www.R-project.org .
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing [internet]. J. R. Stat. Soc. Ser. B. WileyRoyal statistical society; 1995 [cited 2018 may 10]. p. 289–300. Available from: https://www.jstor.org/stable/2346101 .
    Chicken QTL database (release 37). 2018.
    Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, et al. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics [Internet]. BioMed Central; 2018 [cited 2018 Jun 7];19:374. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29783939
    Howrigan DP, Simonson MA, Keller MC. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics. 2011;12.
    Purfield DC, Mcparland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One. 2017;12:1–23.
    Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, Mcwilliam S, et al. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015;24:5616–32.
    Farias FHG, Tomlinson C, Labuda J, Perez-Camargo G, Middleton R, Warren WC. The practical use of genome sequencing data in the management of a feline colony pedigree. BMC Vet Res BMC Veterinary Research. 2017;13:1–9.
    Wright S. Evolution in Mendelian Populations. Genetics. 1931;16:97–159.
    Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution (N Y). 1975;29:1–10.
    Ma Y, Wei J, Zhang Q, Chen L, Wang J, Liu J, et al. A genome scan for selection signatures in pigs. PLoS One. 2015;10:1–18.
    Gholami M, Erbe M, Gärke C, Preisinger R, Weigend A, Weigend S, et al. Population genomic analyses based on 1 million SNPs in commercial egg layers. PLoS One. 2014;9.
    Willing EM, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by fst do not necessarily require large sample sizes when using many snp markers. PLoS One. 2012;7:1–7.
    Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet. 2009;10:639–50.
    Bai Y, Sun G, Kang X, Han R, Tian Y, Li H, et al. Polymorphisms of the pro-opiomelanocortin and agouti-related protein genes and their association with chicken production traits. Mol Biol Rep. 2012;39:7533–9.
    Bennett AK, Hester PY, Spurlock DEM. Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer - broiler cross in chickens. Anim Genet. 2006;37:283–6.
    Bhattacharya TK, Chatterjee RN, Dushyanth K, Paswan C, Shukla R, Shanmugam M. Polymorphism and expression of insulin-like growth factor 1 (IGF1) gene and its association with growth traits in chicken. Br Poult Sci. 2015;56:398–407.
    Bian LH, Wang SZ, Wang QG, Zhang S, Wang YX, Li H. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. J Anim Breed Genet. 2008;125:265–70.
    Zhou H, Mitchell AD, McMurtry JP, Ashwell CM, Lamont SJ. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult Sci. 2005;84:212–9.
    Agarwal SK, Cogburn LA, Burnside J. Comparison of gene expression in normal and growth hormone receptor-deficient dwarf chickens reveals a novel growth hormone regulated gene. Biochem Biophys Res Commun. 1995;206:153–60.
    Li ZH, Li H, Zhang H, Wang SZ, Wang QG, Wang YX. Identification of a single nucleotide polymorphism of the insulin-like growth factor binding protein 2 gene and its association with growth and body composition traits in the chicken. J Anim Sci. 2006;84:2902–6.
    Leng L, Wang S, Li Z, Wang Q, Li H. A polymorphism in the 3′-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens. Poult Sci. 2009;88:938–42.
    Yamagishi T, Ando K, Nakamura H, Nakajima Y. Expression of the Tgfβ2 gene during Chick embryogenesis. Anat Rec. 2012;295:257–67.
    Darzi Niarami M, Masoudi AA, Vaez Torshizi R. Association of Single Nucleotide Polymorphism of GHSR and TGFB2 genes with growth and body composition traits in sire and dam lines of a broiler chicken. Anim Biotechnol. 2014;25:13–22.
    Tang S, Ou J, Sun D, Zhang Y, Xu G, Zhang Y. A novel 62-bp indel mutation in the promoter region of transforming growth factor-beta 2 (TGFB2) gene is associated with body weight in chickens. Anim Genet. 2011;42:108–12.
    Tickle C. The contribution of chicken embryology to the understanding of vertebrate limb development. Mech Dev. 2004;121:1019–29.
    Izpisúa-Belmonte JC, Tickle C, Dollé P, Wolpert L, Duboule D. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature. 1991;350:585–9.
    Wardlaw SL. Obesity as a neuroendocrine disease: lessons to be learned from proopiomelanocortin and melanocortin receptor mutations in mice and men. J Clin Endocrinol Metab. 2001;86:1442–6.
    Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta 2000; 200AD; 1496:3–22.
    Sato K, Abe H, Kono T, Yamazaki M, Nakashima K, Kamada T, et al. Changes in peroxisome proliferator-activated receptor gamma gene expression of chicken abdominal adipose tissue with different age, sex and genotype. Anim Sci J. 2009;80:322–7.
    Ji B, Ernest B, Gooding JR, Das S, Saxton AM, Simon J, et al. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics [Internet]. BioMed Central; 2012 [cited 2018 Mar 21];13:441. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22938590
    Larkina TA, Sazanova AL, Fomichev KA, Barkova OY, Malewski T, Jaszczak K, et al. HMG1A and PPARG are differently expressed in the liver of fat and lean broilers. J Appl Genet. 2011;52:225–8.
    Sun YN, Gao Y, Qiao SP, Wang SZ, Duan K, Wang YX, et al. Epigenetic DNA methylation in the promoters of peroxisome proliferator-activated receptor γ in chicken lines divergently selected for fatness. J Anim Sci. 2014;92:48–53.
    Sato K, Matsushita K, Matsubara Y, Kamada T, Akiba Y. Adipose tissue fat accumulation is reduced by a single intraperitoneal injection of peroxisome proliferator-activated receptor gamma agonist when given to newly hatched chicks. Poult Sci. 2008;87:2281–6.
    Matsubara Y, Aoki M, Endo T, Sato K. Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Comp Biochem Physiol - B Biochem Mol Biol Elsevier Inc. 2013;165:189–95.
    Hermier D, Forgez P, Chapman MJ. A density gradient study of the lipoprotein and apolipoprotein distribution in the chicken, Gallus domesticus. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1985;836:105–18.
    Schumaker VN, Phillips ML, Chatterton JE. Apolipoprotein B and low-density lipoprotein structure: implications for biosynthesis of triglyceride-rich lipoproteins. Adv Protein Chem. 1994;45:205–48.
    Zhang S, Shi H, Li H. Cloning and tissue expression characterization of the chicken APOB gene. Anim Biotechnol. 2007;18:243–50.
    Zhang S, Li H, Shi H. Single Marker and Haplotype Analysis of the Chicken Apolipoprotein B Gene T123G and D9500D9- Polymorphism Reveals Association with Body Growth and Obesity. Poult. Sci. [Internet]. 2006 [cited 2018 Aug 17];85:178–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16523611
    Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6:707–28.
    Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals. 2013;3:356–69.
    Sun L, Lamont SJ, Cooksey AM, McCarthy F, Tudor CO, Vijay-Shanker K, et al. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones. 2015;20:939–50.
    Chuang HH, Neuhausser WM, Julius D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron. 2004;43:859–69.
    Morota G, Peñagaricano F, Petersen JL, Ciobanu DC, Tsuyuzaki K, Nikaido I. An application of MeSH enrichment analysis in livestock. Anim Genet [Internet]. 2015 [cited 2018 Aug 20];46:381–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26036323
    Nadaf J, Pitel F, Gilbert H, Duclos MJ, Vignoles F, Beaumont C, et al. QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics [Internet]. 2009 [cited 2017 Nov 7];38:241–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19531576
    Akiba Y, Chida Y, Takahashi T, Ohtomo Y, Sato K, Takahashi K. Persistent hypoglycemia induced by continuous insulin infusion in broiler chickens. Br Poult Sci. 1999;40:701–5.
    Renema RA, Rustad ME, Robinson FE. Implications of changes to commercial broiler and broiler breeder body weight targets over the past 30 years. Worlds Poult Sci J. 2007;63:457–72.
    Ochieng J, Chaudhuri G. Cystatin superfamily. J Health Care Poor Underserved. 2010;21:51–70.
    Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;(13):5406–20.
    Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol. 2014;5:1–12.
    Wagener R, Ehlen HWA, Ko YP, Kobbe B, Mann HH, Sengle G, et al. The matrilins - adaptor proteins in the extracellular matrix. FEBS Lett. 2005;579:3323–9.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020