An algorithmic Friedman–Pippenger theorem on tree embeddings and applications to routing (2006)
- Authors:
- Autor USP: KOHAYAKAWA, YOSHIHARU - IME
- Unidade: IME
- Assunto: TEORIA DOS GRAFOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SIAM
- Publisher place: Philadelphia
- Date published: 2006
- Source:
- Título: Proceedings
- Conference titles: ACM-SIAM Symposium on Discrete Algorithms - SODA
-
ABNT
DELLAMONICA JUNIOR, Domingos e KOHAYAKAWA, Yoshiharu. An algorithmic Friedman–Pippenger theorem on tree embeddings and applications to routing. 2006, Anais.. Philadelphia: SIAM, 2006. Disponível em: https://dl-acm-org.ez67.periodicos.capes.gov.br/citation.cfm?doid=1109557.1109672. Acesso em: 09 jan. 2026. -
APA
Dellamonica Junior, D., & Kohayakawa, Y. (2006). An algorithmic Friedman–Pippenger theorem on tree embeddings and applications to routing. In Proceedings. Philadelphia: SIAM. Recuperado de https://dl-acm-org.ez67.periodicos.capes.gov.br/citation.cfm?doid=1109557.1109672 -
NLM
Dellamonica Junior D, Kohayakawa Y. An algorithmic Friedman–Pippenger theorem on tree embeddings and applications to routing [Internet]. Proceedings. 2006 ;[citado 2026 jan. 09 ] Available from: https://dl-acm-org.ez67.periodicos.capes.gov.br/citation.cfm?doid=1109557.1109672 -
Vancouver
Dellamonica Junior D, Kohayakawa Y. An algorithmic Friedman–Pippenger theorem on tree embeddings and applications to routing [Internet]. Proceedings. 2006 ;[citado 2026 jan. 09 ] Available from: https://dl-acm-org.ez67.periodicos.capes.gov.br/citation.cfm?doid=1109557.1109672 - Tight Hamilton cycles in random hypergraphs
- Edge-colorings of graphs avoiding fixed monochromatic subgraphs with linear Turán number
- Measures of pseudorandomness for finite sequences: minimal values
- Hitting time of hamilton cycles in random bipartite graphs
- Measures of pseudorandomness for finite sequences: minimum and typical values
- Testing permutation properties through subpermutations
- An optimal algorithm for checking regularity
- Searching in Random partially ordered sets
- The maximum size of a Sidon set contained in sparse random set of integers
- Hypergraphs with many Kneser colorings
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
