Powers of Hamilton cycles in pseudorandom graphs (2014)
- Authors:
- Autor USP: KOHAYAKAWA, YOSHIHARU - IME
- Unidade: IME
- DOI: 10.1007/978-3-642-54423-1_31
- Subjects: ANÁLISE DE ALGORITMOS; COMPUTABILIDADE E COMPLEXIDADE; MATEMÁTICA DISCRETA; ESTRUTURAS DE DADOS; TEORIA DOS GRAFOS
- Keywords: random graph; minimum degree; Hamilton cycle; main lemma; reservoir property
- Language: Inglês
- Imprenta:
- Publisher: Springer
- Publisher place: Heidelberg
- Date published: 2014
- Source:
- Conference titles: Latin American on Theoretical Informatics Symposium - LATIN 2014
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
ALLEN, Peter et al. Powers of Hamilton cycles in pseudorandom graphs. 2014, Anais.. Heidelberg: Springer, 2014. Disponível em: https://doi.org/10.1007/978-3-642-54423-1_31. Acesso em: 09 jan. 2026. -
APA
Allen, P., Bottcher, J., Hàn, H., Kohayakawa, Y., & Person, Y. (2014). Powers of Hamilton cycles in pseudorandom graphs. In LATIN 2014: theoretical informatics: Proceedings. Heidelberg: Springer. doi:10.1007/978-3-642-54423-1_31 -
NLM
Allen P, Bottcher J, Hàn H, Kohayakawa Y, Person Y. Powers of Hamilton cycles in pseudorandom graphs [Internet]. LATIN 2014: theoretical informatics: Proceedings. 2014 ;[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/978-3-642-54423-1_31 -
Vancouver
Allen P, Bottcher J, Hàn H, Kohayakawa Y, Person Y. Powers of Hamilton cycles in pseudorandom graphs [Internet]. LATIN 2014: theoretical informatics: Proceedings. 2014 ;[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/978-3-642-54423-1_31 - Tight Hamilton cycles in random hypergraphs
- Edge-colorings of graphs avoiding fixed monochromatic subgraphs with linear Turán number
- Measures of pseudorandomness for finite sequences: minimal values
- Hitting time of hamilton cycles in random bipartite graphs
- Measures of pseudorandomness for finite sequences: minimum and typical values
- Testing permutation properties through subpermutations
- An optimal algorithm for checking regularity
- Searching in Random partially ordered sets
- The maximum size of a Sidon set contained in sparse random set of integers
- Hypergraphs with many Kneser colorings
Informações sobre o DOI: 10.1007/978-3-642-54423-1_31 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
