Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections (2019)
- Authors:
- Autor USP: PONTI, MOACIR ANTONELLI - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.asoc.2019.04.013
- Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE IMAGEM; ALGORITMOS PARA IMAGENS
- Keywords: Image classification; Relevance sampling; Feature learning; Clustering
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Applied Soft Computing
- ISSN: 1568-4946
- Volume/Número/Paginação/Ano: v. 80, p. 414-424, July 2019
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PONTI, Moacir Antonelli et al. Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections. Applied Soft Computing, v. 80, p. 414-424, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.asoc.2019.04.013. Acesso em: 11 fev. 2026. -
APA
Ponti, M. A., Costa, G. B. P. da, Santos, F. P. dos, & Silveira, K. U. (2019). Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections. Applied Soft Computing, 80, 414-424. doi:10.1016/j.asoc.2019.04.013 -
NLM
Ponti MA, Costa GBP da, Santos FP dos, Silveira KU. Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections [Internet]. Applied Soft Computing. 2019 ; 80 414-424.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.asoc.2019.04.013 -
Vancouver
Ponti MA, Costa GBP da, Santos FP dos, Silveira KU. Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections [Internet]. Applied Soft Computing. 2019 ; 80 414-424.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.asoc.2019.04.013 - Mobile inertial sensors for fall risk screening and prediction
- A decision cognizant Kullback-Leibler divergence
- Deep manifold alignment for mid-grain sketch based image retrieval
- Como funciona o deep learning
- Sketching out the details: sketch-based image retrieval using convolutional neural networks with multi-stage regression
- Generalization of feature embeddings transferred from different video anomaly detection domains
- An incremental linear-time learning algorithm for the optimum-path forest classifier
- Relevance image sampling from collection using importance selection on randomized optimum-path trees
- Compact descriptors for sketch-based image retrieval using a triplet loss convolutional neural network
- Better than counting seconds: identifying fallers among healthy elderly using fusion of accelerometer features and dual-task timed up and go
Informações sobre o DOI: 10.1016/j.asoc.2019.04.013 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
