Machine learning identifies stemness features associated with oncogenic dedifferentiation (2018)
- Authors:
- USP affiliated authors: NOUSHMEHR, HOUTAN - FMRP ; CARLOTTI JUNIOR, CARLOS GILBERTO - FMRP ; SANTOS, JOSÉ SEBASTIÃO DOS - FMRP ; KEMP, RAFAEL - FMRP ; SANKARANKUTTY, AJITH KUMAR - FMRP ; TIRAPELLI, DANIELA PRETTI DA CUNHA - FMRP
- Unidade: FMRP
- DOI: 10.1016/j.cell.2018.03.034
- Subjects: GENÔMICA; NEOPLASIAS; CÉLULAS-TRONCO; APRENDIZADO COMPUTACIONAL; ALGORITMOS
- Keywords: The Cancer Genome Atlas; Cancer stem cells; Dedifferentiation; Epigenomic; Genomic; Machine learning; Pan-cancer; Stemness
- Agências de fomento:
- Finandiado pelo NIH
- Financiado pelo National Cancer Institute, Cairo University
- Finandiado pelo National Institute of General Medical Sciences
- Financiado pela Mary K. Chapman Foundation
- Financido pelo Cancer Prevention and Research Institute of Texas
- Financiado pela Michael and Susan Dell Foundation
- Financiado pelo FNP
- Financiado pelo Henry Ford Cancer Institute’s Early Career Investigator Award
- Financiado pela FAPESP
- Financiado pelo Henry Ford Hospital
- Financiado pelo Spanish Institute of Health Carlos III
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by-nc-nd
-
ABNT
MALTA, Tathiane M. et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell, v. 173, n. 2, p. 338-354.e1-e5, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cell.2018.03.034. Acesso em: 30 dez. 2025. -
APA
Malta, T. M., Noushmehr, H., Carlotti Júnior, C. G., Santos, J. S. dos, Kemp, R., Sankarankutty, A. K., & Tirapelli, D. P. da C. (2018). Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell, 173( 2), 338-354.e1-e5. doi:10.1016/j.cell.2018.03.034 -
NLM
Malta TM, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Machine learning identifies stemness features associated with oncogenic dedifferentiation [Internet]. Cell. 2018 ; 173( 2): 338-354.e1-e5.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.cell.2018.03.034 -
Vancouver
Malta TM, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Machine learning identifies stemness features associated with oncogenic dedifferentiation [Internet]. Cell. 2018 ; 173( 2): 338-354.e1-e5.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.cell.2018.03.034 - Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers
- Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images
- Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas
- An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics
- Pathogenic germline variants in 10,389 adult cancers
- Comprehensive analysis of alternative splicing across tumors from 8,705 patients
- Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines
- Oncogenic signaling pathways in the cancer genome atlas
- Comprehensive molecular characterization of the hippo signaling pathway in cancer
- Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types
Informações sobre o DOI: 10.1016/j.cell.2018.03.034 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002937364.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas