Exportar registro bibliográfico


Metrics:

RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model (2019)

  • Authors:
  • USP affiliated authors: FUKUMASU, HEIDGE - FZEA ; CHAMMAS, ROGER - FM ; COUTINHO, LUIZ LEHMANN - ESALQ ; ALEXANDRE, PÂMELA ALMEIDA - FZEA
  • Unidades: FZEA; FM; ESALQ; FZEA
  • DOI: 10.1038/s41598-018-37413-w
  • Subjects: SEQUÊNCIA DO DNA; NEOPLASIAS MAMÁRIAS; RNA; MELATONINA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1038/s41598-018-37413-w (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      JARDIM-PERASSI, Bruna Victorasso; ALEXANDRE, Pâmela Almeida; SONEHARA, Nathália Martins; et al. RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model. Scientific Reports, Heidelberg, Springer Nature, v. 9, n. 1, p. 1-13, 2019. Disponível em: < http://dx.doi.org/10.1038/s41598-018-37413-w > DOI: 10.1038/s41598-018-37413-w.
    • APA

      Jardim-Perassi, B. V., Alexandre, P. A., Sonehara, N. M., Paula-Junior, R. de, Reis Júnior, O., Fukumasu, H., et al. (2019). RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model. Scientific Reports, 9( 1), 1-13. doi:10.1038/s41598-018-37413-w
    • NLM

      Jardim-Perassi BV, Alexandre PA, Sonehara NM, Paula-Junior R de, Reis Júnior O, Fukumasu H, Chammas R, Coutinho LL, Zuccari DAP de C. RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model [Internet]. Scientific Reports. 2019 ; 9( 1): 1-13.Available from: http://dx.doi.org/10.1038/s41598-018-37413-w
    • Vancouver

      Jardim-Perassi BV, Alexandre PA, Sonehara NM, Paula-Junior R de, Reis Júnior O, Fukumasu H, Chammas R, Coutinho LL, Zuccari DAP de C. RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model [Internet]. Scientific Reports. 2019 ; 9( 1): 1-13.Available from: http://dx.doi.org/10.1038/s41598-018-37413-w

    Referências citadas na obra
    DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A. & Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA. Cancer J. Clin, https://doi.org/10.3322/caac.21412 (2017).
    Fallahpour, S., Navaneelan, T., De, P. & Borgo, A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. C. Open 5, E734–E739 (2017).
    Apuri, S. Neoadjuvant and Adjuvant Therapies for Breast Cancer. South. Med. J. 110, 638–642 (2017).
    Adams, T. A. et al. Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer. Mod. Pathol., https://doi.org/10.1038/modpathol.2017.126 (2017).
    Maganhin, C. C. et al. [Melatonin effects on the female genital system: a brief review]. Rev. Assoc. Med. Bras. 54, 267–271 (2008).
    Zhu, C., Huang, Q. & Zhu, H. Melatonin Inhibits the Proliferation of Gastric Cancer Cells Through Regulating the miR-16-5p-Smad3 Pathway. DNA Cell Biol., https://doi.org/10.1089/dna.2017.4040 (2018).
    Orendáš, P. et al. Melatonin potentiates the anti-tumour effect of pravastatin in rat mammary gland carcinoma model. Int. J. Exp. Pathol, https://doi.org/10.1111/iep.12094 (2014).
    González, A. et al. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF. Oncol. Rep. https://doi.org/10.3892/or.2017.5446 (2017).
    Zonta, Y. R. et al. Melatonin reduces angiogenesis in serous papillary ovarian carcinoma of ethanol-preferring rats. Int. J. Mol. Sci., https://doi.org/10.3390/ijms18040763 (2017).
    Maschio-Signorini, L. B. et al. Melatonin regulates angiogenic and inflammatory proteins in MDA-MB-231 cell line and in co-culture with cancer-associated fibroblasts. Mini-Reviews Med. Chem. 16, 1474–1484 (2016).
    Jardim-Perassi, B. V. et al. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One 9, e85311 (2014).
    Akbarzadeh, M. et al. The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci. Rep. https://doi.org/10.1038/s41598-017-16940-y (2017).
    Borin, T. F. et al. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res. 60, 3–15 (2016).
    Kim, T. H. & Cho, S. G. Melatonin-induced KiSS1 expression inhibits triple-negative breast cancer cell invasiveness. Oncol. Lett., https://doi.org/10.3892/ol.2017.6434 (2017).
    Sainz, R. M. et al. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate, https://doi.org/10.1002/pros.20155 (2005).
    González, A. et al. In vivo inhibition of the estrogen sulfatase enzyme and growth of DMBA-induced mammary tumors by melatonin. Curr. Cancer Drug Targets, https://doi.org/10.2174/156800910791190201 (2010).
    Hill, S. M. et al. Melatonin: An inhibitor of breast cancer. Endocrine-Related Cancer 22, R183–R204 (2015).
    Reiter, R. J. et al. Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International Journal of Molecular Sciences 18 (2017).
    Jardim-Perassi, B. V. et al. Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anticancer. Agents Med. Chem., https://doi.org/10.2174/1871520615666150511094201 (2016).
    Dai, M. et al. Melatonin modulates the expression of VEGF and HIF-1α induced by CoCl2in cultured cancer cells. J. Pineal Res., https://doi.org/10.1111/j.1600-079X.2007.00498.x (2008).
    Carbajo-Pescador, S. et al. Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br. J. Cancer, https://doi.org/10.1038/bjc.2013.285 (2013).
    Park, S.-Y. et al. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J. Pineal Res. 48, 178–84 (2010).
    Dubocovich, M. L. & Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27, 101–110 (2005).
    Sánchez-Barceló, E. J., Cos, S., Fernández, R. & Mediavilla, M. D. Melatonin and mammary cancer: A short review. in. Endocrine-Related Cancer 10, 153–159 (2003).
    Reiter, R. J. et al. Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv. Exp. Med. Biol. 527, 539–48 (2003).
    Suwanjang, W., Abramov, A. Y., Charngkaew, K., Govitrapong, P. & Chetsawang, B. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem. Int., https://doi.org/10.1016/j.neuint.2016.05.003 (2016).
    Tahan, G. et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig. Dis. Sci. 56, 715–720 (2011).
    Janjetovic, Z. et al. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep., https://doi.org/10.1038/s41598-017-01305-2 (2017).
    Galdiero, M. R. et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology 218, 1402–1410 (2013).
    Ribatti, D. Mast cells and macrophages exert beneficial and detrimental effects on tumor progression and angiogenesis. Immunology Letters 152, 83–88 (2013).
    Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).
    Cohen, I. J. & Blasberg, R. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer. Breast Cancer (Auckl). 11, 1178223417731565 (2017).
    Bradford, J. R. et al. RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib. PLoS One 8 (2013).
    Stakleff, K. D. S. & Von Gruenigen, V. E. Rodent models for ovarian cancer research. Int. J. Gynecol. Cancer 13, 405–12 (2003).
    Szadvari, I., Krizanova, O. & Babula, P. Athymic Nude Mice as an Experimental Model for Cancer Treatment Cancer diseases and their treatment. Physiol. Res 65, 441–453 (2016).
    Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).
    Alexandre, P. A. et al. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics 16, 1073 (2015).
    Liu, R., Cheng, Y., Yu, J., Lv, Q.-L. & Zhou, H.-H. Identification and validation of gene module associated with lung cancer through coexpression network analysis. Gene 563, 56–62 (2015).
    Chen, L., Liu, L., Li, Y. & Gao, J. Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cellular and Developmental Biology - Animal 1–10, https://doi.org/10.1007/s11626-017-0200-z (2017).
    Sardo, F. L, Muti, P., Blandino, G. & Strano, S. Melatonin and hippo pathway: Is there existing cross-talk? Int. J. Mol. Sci. 18 (2017).
    Sánchez-Hidalgo, M., Guerrero, J. M., Villegas, I., Packham, G. & De La Lastra, C. A. Melatonin, a natural programmed cell death inducer in cancer. Curr. Med. Chem. 19, 3805–21 (2012).
    El-Aziz, M. A. A. et al. The biochemical and morphological alterations following administration of melatonin, retinoic acid and Nigella sativa in mammary carcinoma: an animal model. Int. J. Exp. Pathol. 86, 383–396 (2005).
    Asghari, M. H., Moloudizargari, M., Ghobadi, E., Fallah, M. & Abdollahi, M. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer. Life Sciences 185, 38–45 (2017).
    Carrillo-Vico, A., Guerrero, J. M., Lardone, P. J. & Reiter, R. J. A Review of the Multiple Actions of Melatonin on the Immune System. Endocrine 27, 189–200 (2005).
    Carpentieri, A. Diaz De Barboza, G., Areco, V., Peralta Lopez, M. & Tolosa De Talamoni, N. New perspectives in melatonin uses. Pharmacological Research 65, 437–444 (2012).
    Kim, T. K. et al. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 27, 2742–2755 (2013).
    Najafi, M. et al. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 25, 403–413 (2017).
    Mori, F. et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget 7, 20532–20548 (2016).
    Wang, T. H. et al. Melatonin inhibits the progression of hepatocellular carcinoma through microRNA let7i-3p mediated RAF1 reduction. Int. J. Mol. Sci., https://doi.org/10.3390/ijms19092687 (2018).
    Lu, K. H. et al. Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway. J. Pineal Res., https://doi.org/10.1111/jpi.12507 (2018).
    Lee, S. E. et al. Molecular analysis of melatonin-induced changes in breast cancer cells: Microarray study of anti-cancer effect of melatonin. Biochip J., https://doi.org/10.1007/s13206-011-5409-4 (2011).
    Céspedes, M. V., Casanova, I., Parreño, M. & Mangues, R. Mouse models in oncogenesis and cancer therapy. Clin. Transl. Oncol. 8, 318–329 (2006).
    Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, 694–708 (2014).
    Srinivasan, V., Pandi-Perumal, S. R., Brzezinski, A., Bhatnagar, K. P. & Cardinali, D. P. Melatonin, Immune Function and Cancer. Recent Pat. Endocr. Metab. Immune Drug Discov. 5, 109–23 (2011).
    Vinther, A. G. & Claësson, M. H. The influence of melatonin on the immune system and cancer. Ugeskr. Laeger 177, 20–23 (2015).
    Maestroni, G. J. The immunotherapeutic potential of melatonin. Expert Opin. Investig. Drugs 10, 467–476 (2001).
    Radogna, F., Diederich, M. & Ghibelli, L. Melatonin: A pleiotropic molecule regulating inflammation. Biochemical Pharmacology 80, 1844–1852 (2010).
    Blumberg, H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204, 2603–2614 (2007).
    Chang, L., Guo, R. & Yuan, Z. IL-36α suppresses proliferation of ovarian cancer cells. Tumor Biol. 39, 101042831770691 (2017).
    Solahaye-Kahnamouii, S. et al. The effect of interleukin 36 gene therapy in the regression of tumor. Iran. J. Cancer Prev. 7, 197–203 (2014).
    Gresnigt, M. S. & Van de Veerdonk, F. L. Biology of IL-36 cytokines and their role in disease. Seminars in Immunology 25, 458–465 (2013).
    Wang, X. et al. IL-36γ Transforms the Tumor Microenvironment and Promotes Type 1 Lymphocyte-Mediated Antitumor Immune Responses. Cancer Cell 28, 296–306 (2015).
    Wang, Z.-S. et al. Decreased expression of interleukin-36α predicts poor prognosis in colorectal cancer patients. Int. J. Clin. Exp. Pathol. 7, 8077–81 (2014).
    Weinstein, A. M. & Storkus, W. J. Therapeutic Lymphoid Organogenesis in the Tumor Microenvironment. Adv. Cancer Res. 128, 197–233 (2015).
    Zhang, Z. et al. TIPE2 suppresses the tumorigenesis, growth and metastasis of breast cancer via inhibition of the AKT and p38 signaling pathways. Oncol. Rep. 36, 3311–3316 (2016).
    Gus-Brautbar, Y. et al. The Anti-inflammatory TIPE2 Is an Inhibitor of the Oncogenic Ras. Mol. Cell 45, 610–618 (2012).
    Lou, Y. et al. Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein. J. Immunol. 191, 4849–57 (2013).
    WU, J. et al. TIPE2 functions as a metastasis suppressor via negatively regulating β-catenin through activating GSK3β in gastric cancer. Int. J. Oncol. 48, 199–206 (2016).
    Wang, K., Ren, Y., Liu, Y., Zhang, J. & He, J.-J. Tumor necrosis factor (TNF)-α-induced protein 8-like-2 (TIPE2) inhibits proliferation and tumorigenesis in breast cancer cells. Oncol. Res. 25, 55–63 (2017).
    Yin, H. et al. Adenovirus-mediated TIPE2 overexpression inhibits gastric cancer metastasis via reversal of epithelial-mesenchymal transition. Cancer Gene Ther. 24, 180–188 (2017).
    Zhang, Z., Liu, L., Cao, S., Zhu, Y. & Mei, Q. Gene delivery of TIPE2 inhibits breast cancer development and metastasis via CD8+ T and NK cell-mediated antitumor responses. Mol. Immunol. 85, 230–237 (2017).
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020