Exportar registro bibliográfico


Metrics:

Retinal topographic maps: a glimpse into the animals’ visual world (2018)

  • Authors:
  • USP affiliated authors: BONCI, DANIELA MARIA OLIVEIRA - IP ; VENTURA, DORA SELMA FIX - IP
  • Unidade: IP
  • DOI: 10.5772/intechopen.74645
  • Subjects: RETINA; ACUIDADE VISUAL; COBRAS; COLUBRIDAE; DIPSADIDAE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.5772/intechopen.74645 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      HAUZMAN, Einat; BONCI, Daniela Maria Oliveira; VENTURA, Dora Selma Fix. Retinal topographic maps: a glimpse into the animals’ visual world. In: Sensory nervous system[S.l: s.n.], 2018.Disponível em: DOI: 10.5772/intechopen.74645.
    • APA

      Hauzman, E., Bonci, D. M. O., & Ventura, D. S. F. (2018). Retinal topographic maps: a glimpse into the animals’ visual world. In Sensory nervous system. Londres: IntechOpen. doi:10.5772/intechopen.74645
    • NLM

      Hauzman E, Bonci DMO, Ventura DSF. Retinal topographic maps: a glimpse into the animals’ visual world [Internet]. In: Sensory nervous system. Londres: IntechOpen; 2018. Available from: http://dx.doi.org/10.5772/intechopen.74645
    • Vancouver

      Hauzman E, Bonci DMO, Ventura DSF. Retinal topographic maps: a glimpse into the animals’ visual world [Internet]. In: Sensory nervous system. Londres: IntechOpen; 2018. Available from: http://dx.doi.org/10.5772/intechopen.74645

    Referências citadas na obra
    Ramón y Cajal S. La rétine des vertebrés. La Cellule. 1893;9:17-257
    Walls GL. The Vertebrate Eye and its Adaptative Radiation. Bloomfield Hills: Cranbook Inst of Science; 1942
    Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Documenta Ophthalmologica. 1985;60:327-346
    Bok D. The retinal pigment epithelium: A versatile partner in vision. Journal of Cell Science. 1993;(Suppl. 17):189-195
    Strauss O. The retinal pigment epithelium in visual function. Physiological Reviews. 2005;85:845-881
    Amram B, Cohen-Tayar Y, David A, Ashery-Padan R. The retinal pigmented epithelium-from basic developmental biology research to translational approaches. The International Journal of Developmental Biology. 2017;61(3-4-5):225
    Ali MA, Klyne MA. Vision in Vertebrates. New York and London: Plenum Press; 1985. 272 p
    Bowmaker JK. The evolution of vertebrate visual pigments and photoreceptors. In: Cronly-Dillon J, Gregory RL, editors. Vision and Visual Dysfunction. Evolution of the Eye and Visual System. Vol. 2. London: Macmilla Press; 1991
    Dowling JE. The Retina: An Approachable Part the Brain. Cambridge, Mass: Belknap Press of Harvard University Press; 1987
    Turner PL, Mainster MA. Circadian photoreception: Ageing and the eye’s important role in systemic health. British Journal of Ophthalmology. 2008;92:1439-1444
    Jacobs GH, Rowe MP. Evolution of vertebrate colour vision. Clinical & Experimental Optometry. 2004;87:206-216
    Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:340-345
    Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Povencio I, Kay SA. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002;298:2213-2216
    Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM. Melanopsin is required for non-image-forming photic responses in blind mice. Science. 2003;301:525-527
    Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070-1073
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065-1070
    Foster RG, Hankins MW. Non-rod, non-cone photoreception in the vertebrates. Progress in Retinal and Eye Research. 2002;21:507-527
    Dacey DM, Liao H, Peterson B, Robinson F, Smith VC, Pokorny J, Yau KW, Gamlin PD. Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN. Nature. 2005;433:749-754
    Davies WI, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW. Functional diversity of melanopsins and their global expression in the teleost retina. Cellular and Molecular Life Sciences. 2011;68(24):4115-4132
    Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG. Zebrafish melanopsin: Isolation, tissue localisation and phylogenetic position. Brain Research. Molecular Brain Research. 2002;107:128-136
    Bailey MJ, Cassone VM. Melanopsin expression in the chick retina and pineal gland. Brain Research. Molecular Brain Research. 2005;134:345-348
    Verra DM, Contín MA, Hicks D, Guido ME. Early onset and differential temporospatial expression of melanopsin isoforms in the developing chicken retina. Investigative Ophthalmology & Visual Science. 2011;52(8):5111-5120
    Thibos LN, Cheney FE, Walsh DJ. Retinal limits to the detection and resolution of gratings. Journal of the Optical Society of America. A. 1987;4:1524-1529
    Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M. Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity. Brain, Behavior and Evolution. 1988;32:39-56
    Collin SP, Pettigrew JD. Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain, Behavior and Evolution. 1989;34:184-192
    Lisney TJ, Collin SP. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs. Brain, Behavior and Evolution. 2008;72:59-77
    Hughes EC. The Sociological Eye: Selected Papers. New Jersey: Transaction Publishers; 1971
    Hughes A. The topography of vision in mammals of contrasting life styles: Comparative optics and retinal organization. In: Crescitelli F, editor. The Visual System in Vertebrates: Handbook of Sensory Physiology. Vol. VII/5. Berlin, Heidelberg: Springer; 1977. pp. 613-756
    Silveira LCL. Organização do Sistema Visual de Roedores da Amazônia: Óptica Ocular e Distribuição das Células Ganglionares Retinianas. Instituto de Ciências Biológicas; 1985. p. 427
    Silveira LCL, Picanço-Diniz CW, Oswaldo-Cruz E. Distribution and size of ganglion cells in the retina of large Amazon rodents. Visual Neuroscience. 1989;2:221-235
    Collin SP. Behavioural ecology and retinal cell topography. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S, editors. Adaptive Mechanisms in the Ecology of Vision. Dordrecht: Kluwer Academic Publishers; 1999. pp. 509-535
    Collin SP. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clinical & Experimental Optometry. 2008;91:85-95
    Pettigrew JD, Manger PR. Retinal ganglion cell density of the black rhinoceros (Dicero bicornis): Calculating visual resolution. Visual Neuroscience. 2008;25:215-220
    Hart NS, Coimbra JP, Collin SP, Westhoff G. Photoreceptor types, visual pigments, and topographic specializations in the retinas of Hydrophiid sea snakes. The Journal of Comparative Neurology. 2012;520:1246-1261
    Thompson I. Considering the evolution of vertebrate neural reina. In: Cronly-Dillon J, Gregory RL, editors. Vision and Visual Dysfunction. Evolution of the Eye and Visual System. Vol. 2. London: Macmillan Press; 1991
    Hauzman E, Bonci DMO, Grotzner SR, Mela M, Liber AMP, Martins SL, Ventura DF. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes. Brain, Behavior and Evolution. 2014;84:197-213
    Brown KT. A linear area centralis extending across the turtle retina and stabilized to the horizontal by non visual cues. Vision Research. 1969;9(9):1053-1054
    Moore BA, Tyrell LP, Kamilar JM, Collin S, Dominy NJ, Hall MI, et al. Structure and function of regional specializations in the vertebrate retina. In: Kaas JH, editor. Evolution of Nervous Systems. Vol. 1. 2nd ed. Cambridge: Academic Press; 2017. pp. 351-372
    Granda AM, Haden KW. Retinal oil globule counts and distribution in two species of turtles: Pseudemys scripta elegans and Chelonia mydas mydas. Vision Research. 1970;1:79-84
    Grötzner SR. Densidade e topografia dos fotorrecptores da retina da tartaruga Trachemys scripta elegans com imunocitoquímica de opsinas. Instituto de Psicologia: Tese (Doutorado) Universidade de São Paulo; 2005. 158 p
    Wang HH, Gallagher SK, Byers SR, Madl JE, Gionfriddo JR. Retinal ganglion cell distribution and visual acuity in alpacas (Vicugna pacos). Veterinary Ophthalmology. 2015;18:35-42
    Rocha FAF, Ahnelt PK, Peichl L, Saito CA, Silveira LCL, Lima SMA. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti). Visual Neuroscience. 2009;26:167-175
    BLS A-D-C, Pessoa VF, Bousfield JD, Clarke RJ. Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus). Brazilian Journal of Medical and Biological Research. 1989;22:233-236
    Stone J, Halasz P. Topography of the retina in the elephant Loxodonta africana. Brain, Behavior and Evolution. 1989;34:84-95
    Collin SP, Partridge JC. Retinal specialisations in the eyes of deep-sea teleosts. Journal of Fish Biology. 1996;49(Suppl. A):157-174
    Rahman ML, Aoyama M, Sugita S. Number, distribution and size of retinal ganglion cells in the jungle crow (Corvus macrorhynchos). Anatomical Science International. 2006;86:252-259
    Kolb H, Nelson R, Mariani A. Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research. 1981;21:1081-1114
    Moraes AMM, Oliveira MM, Hokoc JN. Retinal ganglion cells in the south American opossum (Didelphis aurita). The Journal of Comparative Neurology. 2000;418(2):193-216
    Walls GL. Significance of the foveal depression. Archives of Ophthalmology. 1937;18:912-919
    Polyak SL. The Retina. Chicago: University of Chicago Press; 1941
    Moroney MK, Pettigrew JD. Some observations on the visual optics of kingfishers (Aves, Caraciformes, Alcedinidae). Journal of Comparative Physiology. A. 1987;160:137-149
    Smith G, Atchison DA. The Eye and Visual Optical Instrument. New York: Cambridge University Press; 1997
    Coimbra JP, Trevia N, Marceliano ML, da Silveira Andrade-Da-Costa BL, Picanço-Diniz CW, Yamada ES. Number and distribution of neurons in the retinal ganglion cell layer in relation to foraging behaviors of tyrant flycatchers. The Journal of Comparative Neurology. 2009;514:66-73
    Cleland BG, Crewther DP, Crewther SG, Mitchell DE. Normality of spatial resolution of retinal ganglion cells in cats with strabismic amblyopia. The Journal of Physiology. 1982;326:235-249
    Hall SE, Mitchell DE. Grating acuity of cats measured with detection and discrimination tasks. Behavioural Brain Research. 1991;44:1-9
    Timney B, Keil K. Visual acuity in the horse. Vision Research. 1992;32:2289-2293
    Evans KE, McGreevy PD. The distribution of ganglion cells in the equine retina and its relationship to skull morphology. Anatomia, Histologia, Embryologia. 2007;36:151-156
    Reymond L. Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vision Research. 1985;25:1477-1491
    Coates M, Ruta M. Nice snake, shame about the legs. Trends in Ecology & Evolution. 2000;15:503-507
    Vidal N, Hedges SB. Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society B: Biological Sciences (Supplement). 2004;271:S226-S229
    Uetz P, editor. The Reptile Database. 2006. http://www.reptile-database.org [Accessed October 27, 2017]
    Lillywhite HB, Henderson RW. Behavioral and functional ecology of arboreal snakes. In: Seigel RA, Collins JT, editors. Snakes: Ecology and Behaviour. San Francisco: McGraw-Hill; 1993. pp. 1-48
    Cadle JE. Geographic distribution: Problems in phylogeny and zoogeography. In: Seigel RA, Collins JT, Novak SS, editors. Snakes: Ecology and Evolutionary Biology. New York: McGraw-Hill Publishing Company; 1987. pp. 77-105
    McDowell SB. Systematics. In: Seigel RA et al, editors. Snakes: Ecology and Evolutionary Biology. New York: MacMillan; 1987. pp. 3-50
    Ford NB, Burghardt GM. Perceptual mechanisms and the behavioral ecology of snakes. In: Seigel RA, Collins JT, editors. Snakes: Ecology and Behavior. San Francisco: McGraw-Hill; 1993. pp. 117-164
    Greene HW. Snakes. The Evolution of Mystery in Nature. Berkeley: University of California Press; 1997. 351 p
    Wong R. Morphology and distribution of neurons in the retina of the American garter snake (Thamnophis sirtalis). The Journal of Comparative Neurology. 1989;283:597-601
    Baker RA, Gawne TJ, Loop MS, Pullman S. Visual acuity of the midland banded water snake estimated from evoked telencephalic potentials. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2007;193:865-870
    Northmore DP, Granda AM. Ocular dimensions and schematic eyes of freshwater and sea turtles. Visual Neuroscience. 1991;7:627-635
    New ST, Bull CM. Retinal ganglion cell topography and visual acuity of the sleepy lizard (Tiliqua rugosa). Journal of Comparative Physiology. A. 2011;197(6):703-709
    Fleishman LJ. The influence of the sensory system and the environment on mption patterns in the visual displays of anoline lizards and other vertebrates. The American Naturalist. 1992;139:S36-S61
    Silveira LCL, Picanço-Diniz CW, Oswaldo-Cruz E. Contrast sensitivity function and visual acuity of the opossum. Vision Research. 1982;22(11):1371-1377
    Dean P. Visual pathways and acuity in hooded rats. Behavioural Brain Research. 1981;3:239-271
    Prusky GT, West PWR, Douglas RM. Behavioral assessment of visual acuity in mice ans rats. Vision Research. 2000;40:2201-2209
    Gianfranceschi L, Fiorentini A, Maffei L. Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Research. 1999;39:569-574
    Campbell FW, Gubisch RW. The effect of chromatic aberration on visual acuity. The Journal of Physiology. 1967;192:345-358
    Marques OAV, Eterovic A, Sazima I. Serpentes da Mata Atlântica: Guia Ilustrado para Serra do Mar. Holos: Ribeirão Preto; 2001
    Marques OAV, Pereira DN, Barbo FE, Germano VJ, Sawaya RJ. Os répteis do Município de São Paulo: Diversidade e ecologia da fauna pretérita e atual. Biota Neotropica. 2009;9(2):139-150
    Torello-Viera NF, Marques OAV. Daily activity of neotropical dipsadids snakes. South American Journal of Herpetology. 2017;12(2):128-135
    Wassle H, Peichl L, Boycott BB. Morphology and topography of on- and off-alpha cells in the cat retina. Proceedings of the Royal Society of London—Series B: Biological Sciences. 1981;212:157-175
    Peichl L. Topography of ganglion cells in the dog and wolf retina. The Journal of Comparative Neurology. 1992;324:603-620
    Coimbra JP, Nolan PM, Collin SP, Hart N. Retinal ganglion cell topography and spatial resolving power in penguins. Brain, Behavior and Evolution. 2012;80:254-268
    Ehrlich D. Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. The Journal of Comparative Neurology. 1981;195:643-657
    Hayes BP. Cell populations of the ganglion cell layer: Displaced amacrine and matching amacrine cells in the pigeon retina. Experimental Brain Research. 1984;56:565-573
    Hart NS. Vision in the peafowl (Aves: Pavo cristatus). The Journal of Experimental Biology. 2002;205:3925-3935
    Gundersen HJG. Notes on the estimation of the numerical density of arbitrary profiles: The edge effect. Journal of Microscopy. 1977;111:219-223
    Ullmann JFP, Moore BA, Temple SH, Fernandez-Juricic E, Collin SP. The retinal wholemount technique: A window to understanding the brain and behaviour. Brain, Behavior and Evolution. 2012;79:26-44
    Lisney TJ, Stecyk K, Kolominsky J, Schmidt BK, Corfield JR, Iwaniuk AN, Wylie DR. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2013;199:385-402
    West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record. 1991;231:482-497
    Coimbra JP, Hart N, Collin SP, Manger PR. Scene from above: Retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). The Journal of Comparative Neurology. 2013;521:2042-2057
    Scheaffer RL, Mendenhall W, Ott L. Elementary Survey Sampling. 5th ed. Boston: PWS-Kent; 1996
    Boire D, Dufour JS, Theoret H, Ptito M. Quantitative analysis of the retinal ganglion cell layer in the ostrich, Struthio camelus. Brain, Behavior and Evolution. 2001;58:343-355
    Sivak JG. The accommodative significance of the ‘ramp’ retina of the eye of the stingray. Vision Research. 1976;16:531-534
    Sivak JG. Optical characteristics of the eye of the spiny dogfish (Squalus acanthias). Revue Canadienne de Biologie. 1978;37:209-217
    Snyder AW, Miller WH. Photoreceptor diameter and spacing for highest resolving power. Journal of the Optical Society of America. 1977;67:696-698
    Underwood G. A Contribution to the Classification of Snakes. London: Trustees of the British Museum (Natural History); 1967
    Underwood G. The eye. In: Gans C, Parson TS, editors. Biology of the Reptilia, Morphology B. Vol. 2. New York: Academic Press; 1970. pp. 1-97
    Caprette CL. Conquering the cold shudder: The origin and evolution of snakes eyes [Ph.D. Thesis]. The Ohio State University; 2005. 107 p
    Jacobs GH, Fenwick JA, Crognale MA, Deegan JF II. The al cone retina of the garter snake: Spectral mechanisms and photopigment. Journal of Comparative Physiology. A. 1992;170:701-707
    Freeman B, Tancred E. Number and distribution of ganglion cells in the retina of the brush-tailed possum, Trichosurus vulpecula. The Journal of Comparative Neurology. 1978;177:557-567
    Schiviz AN, Ruf T, Kuebber-Heiss A, Schubert C, Ahnelt PK. Retinal cone topography of artiodactyl mammals: Influence of body height and habitat. The Journal of Comparative Neurology. 2008;507:1336-1350
    Stone J. Parallel Processing in the Visual System. London: Plenum; 1983
    Marx H, Rabb GB. Phyletic analysis of fifty characters of advanced snakes. Fieldiana: Zoology, Chicago. 1972;63:1-320
    Savitzky AH. Coadapted character complexes among snakes: Fossoriality, piscivory, and durophagy. American Zoologist. 1983;23:397-409
    Scartozzoni RR. Morfologia de serpentes aquáticas neotropicais: Um estudo comparativo [Dissertação de Mestrado]. São Paulo: Universidade de São Paulo; 2005. p. 102
    Martins M. História natural de uma taxocenose de serpentes de mata na região de Manaus, Amazônia Central, Brasil. Tese [Doutorado em Ciências]. Campinas: Instituto de Biologia, Universidade Estadual de Campinas; 1994. pp. 98
    Sazima I, Martins M. Presas grandes e serpentes jovens. Memorias Do Instituto Butantan. 1990;52(3):73-79

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020