Exportar registro bibliográfico


Metrics:

Influence diagnostics in mixed effects logistic regression models (2019)

  • Authors:
  • Autor USP: GIAMPAOLI, VIVIANA - IME
  • Unidade: IME
  • DOI: 10.1007/s11749-018-0613-3
  • Subjects: REGRESSÃO LINEAR; MODELOS LINEARES GENERALIZADOS
  • Keywords: Approximation of integrals; Correlated binary responses; Metropolis–Hastings and Monte Carlo methods; Probability of success; R software
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: TEST
    • ISSN: 1133-0686
    • Volume/Número/Paginação/Ano: v. 28, n. 3, p. 920–942, 2019
  • Versão AceitaAcesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11749-018-0613-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    Download do texto completo

    Tipo Nome Link
    Privado2910399.pdf
    Versão Aceita2910399.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      TAPIA, Alejandra; LEIVA, Victor; DIAZ, Maria del Pilar; GIAMPAOLI, Viviana. Influence diagnostics in mixed effects logistic regression models. TEST, Heidelberg, Springer, v. 28, n. 3, p. 920–942, 2019. Disponível em: < http://dx.doi.org/10.1007/s11749-018-0613-3 > DOI: 10.1007/s11749-018-0613-3.
    • APA

      Tapia, A., Leiva, V., Diaz, M. del P., & Giampaoli, V. (2019). Influence diagnostics in mixed effects logistic regression models. TEST, 28( 3), 920–942. doi:10.1007/s11749-018-0613-3
    • NLM

      Tapia A, Leiva V, Diaz M del P, Giampaoli V. Influence diagnostics in mixed effects logistic regression models [Internet]. TEST. 2019 ; 28( 3): 920–942.Available from: http://dx.doi.org/10.1007/s11749-018-0613-3
    • Vancouver

      Tapia A, Leiva V, Diaz M del P, Giampaoli V. Influence diagnostics in mixed effects logistic regression models [Internet]. TEST. 2019 ; 28( 3): 920–942.Available from: http://dx.doi.org/10.1007/s11749-018-0613-3

    Referências citadas na obra
    Agresti A (2003) Categorical data analysis, vol 482. Wiley, New York
    Assumpção RAB, Uribe-Opazo MA, Galea M (2014) Analysis of local influence in geostatistics using student- $$t$$ t distribution. J Appl Stat 41:2323–2341
    Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25
    Capanu M, Gönen M, Begg CB (2013) An assessment of estimation methods for generalized linear mixed models with binary outcomes. Stat Med 32:4550–4566
    Caro-Lopera F, Leiva V, Balakrishnan N (2012) Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum–Saunders distributions. J Multivar Anal 104:126–139
    Chen F, Zhu H-T, Song X-Y, Lee S-Y (2010) Perturbation selection and local influence analysis for generalized linear mixed models. J Comput Graph Stat 19:826–842
    Cook RD (1986) Assessment of local influence. J R Stat Soc B 48:133–169
    Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, London
    Crowder MJ (1978) Beta-binomial ANOVA for proportions. J R Stat Soc C 27:34–37
    De Bastiani F, Cysneiros AHMA, Uribe-Opazo MA, Galea M (2015) Influence diagnostics in elliptical spatial linear models. TEST 24:322–340
    Demidenko E (2013) Mixed models: theory and applications with R. Wiley, Hoboken
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38
    Díaz-García J, Galea M, Leiva V (2003) Influence diagnostics for elliptical multivariate linear regression models. Commun Stat Theory Methods 32:625–641
    Diggle PJ, Liang K-Y, Zeger SL (1996) Analysis of longitudinal data. Oxford University Press, London
    Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018) Birnbaum–Saunders spatial regression models: diagnostics and application to chemical data. Chemom Intell Lab Syst 177:114–128
    Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression. Wiley, Hoboken
    Hossain M, Islam MA (2003) Application of local influence diagnostics to the linear logistic regression models. Dhaka Univ J Sci 51:269–278
    Ibacache-Pulgar G, Paula GA, Cysneiros FJA (2013) Semiparametric additive models under symmetric distributions. TEST 22:103–121
    Jiang J (2007) Linear and generalized linear mixed models and their applications. Springer, New York
    Larsen K, Petersen JH, Budtz-Jørgensen E, Endahl L (2000) Interpreting parameters in the logistic regression model with random effects. Biometrics 56:909–914
    Leão J, Leiva V, Saulo H, Tomazella V (2017) Birnbaum–Saunders frailty regression models: diagnostics and application to medical data. Biomet J 59:291–314
    Leiva V, Santos-Neto M, Cysneiros FJA, Barros M (2014) Birnbaum–Saunders statistical modelling: a new approach. Stat Model 14:21–48
    Lesaffre E, Spiessens B (2001) On the effect of the number of quadrature points in a logistic random-effects model: an example. J R Stat Soc C 50:325–335
    Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54:570–582
    Liu S (2000) On local influence in elliptical linear regression models. Stat Pap 41:211–224
    Liu S (2004) On diagnostics in conditionally heteroskedastic time series models under elliptical distributions. J Appl Probab 41:393–406
    Liu Y, Ji G, Liu S (2015) Influence diagnostics in a vector autoregressive model. J Stat Comput Simul 85:2632–2655
    Marchant C, Leiva V, Cysneiros FJA, Vivanco JF (2016) Diagnostics in multivariate generalized Birnbaum–Saunders regression models. J Appl Stat 43:2829–2849
    McCullagh P, Nelder JA (1983) Generalized linear models. Chapman and Hall, London
    McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc 92:162–170
    McCulloch S, Searle S (2001) Generalized, linear and mixed models. Wiley, New York
    Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York
    Nyangoma SO, Fung WK, Jansen RC (2006) Identifying influential multinomial observations by perturbation. Comput Stat Data Anal 50:2799–2821
    Ouwens MJNM, Tan FES, Berger MPF (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics 57:1166–1172
    Pinheiro JC, Chao EC (2006) Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J Comput Graph Stat 15:58–81
    Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61:51–61
    R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Rakhmawati TW, Molenberghs G, Verbeke G, Faes C (2017) Local influence diagnostics for generalized linear mixed models with overdispersion. J Appl Stat 44:620–641
    Raudenbush SW, Yang M, Yosef M (2000) Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. J Comput Graph Stat 9:141–157
    Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer, New York
    Rocha AV, Simas AB (2011) Influence diagnostic in a general class of beta regression models. TEST 20:95–119
    Santos-Neto M, Cysneiros FJA, Leiva V, Barros M (2016) Reparameterized Birnbaum–Saunders regression models with varying precision. Electron J Stat 10:2825–2855
    Stehlík M, Rodríguez-Díaz JM, Müller WG, López-Fidalgo J (2008) Optimal allocation of bioassays in the case of parametrized covariance functions: an application to lung’s retention of radioactive particles. TEST 17:56–68
    Stiratelli R, Laird N, Ware JH (1984) Random effects models for serial observations with binary responses. Biometrics 40:961–971
    Svetliza CF, Paula GA (2001) On diagnostics in log-linear negative binomial models. J Stat Comput Simul 71:231–244
    Wolfinger R, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul 48(3–4):233–243
    Xu L, Lee SY, Poon WY (2006) Deletion measures for generalized linear mixed effects models. Comput Stat Data Anal 51:1131–1146
    Zhu H-T, Lee S-Y (2001) Local influence for incomplete-data models. J R Stat Soc B 63:111–126
    Zhu H-T, Lee S-Y (2003) Local influence for generalized linear mixed models. Can J Stat 31:293–309
    Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021