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Abstract

Correlated binary responses are commonly described by mixed effects logistic
regression models. This article derives a diagnostic methodology based on the Q-
displacement function to investigate local influence of the responses in the maximum
likelihood estimates of the parameters and in the predictive performance of the mixed
effects logistic regression model. An appropriate perturbation strategy of the proba-
bility of success is established, as a form of assessing the perturbation in the response.
The diagnostic methodology is evaluated with Monte Carlo simulations. Illustrations
with two real-world data sets (balanced and unbalanced) are conducted to show the
potential of the proposed methodology.

Keywords Approximation of integrals - Correlated binary responses -
Metropolis—Hastings and Monte Carlo methods - Probability of success - R software
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1 Introduction
Correlated binary response variables (responses hereafter) frequently occur in sev-

eral areas such as agriculture, economics, medicine, psychology and sociology. The
correlation of binary responses may be attributed to grouped data, longitudinal data
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or repeated measurements; see, for example, Stiratelli et al. (1984), Diggle et al.
(1996) and Hosmer et al. (2013). A commonly used model for analyzing this kind of
data is the mixed effects logistic regression model (MELRM hereafter). This model
belongs to the class of generalized linear mixed models (McCulloch and Searle 2001;
Jiang 2007), which accommodate the correlation structure through unobservable ran-
dom variables considered as random effects. Thus, conditional on random effects, the
responses have a distribution belonging to the exponential family, which in the case
of the MELRM corresponds to the Bernoulli distribution with parameter given by the
probability of success. There, the random effects are assumed to follow a multivariate
normal distribution with zero mean vector and unknown variance—covariance matrix.

The estimation of parameters in generalized linear mixed models is often conducted
with the maximum likelihood (ML) method. However, it is not an easy computational
task, because the incorporation of random effects leads to a likelihood function of
observed data that includes an integral, which generally does not have an analytical
solution and is besides of high dimension. To solve this integral, numerical meth-
ods such as approximations of Laplace—AL—(Raudenbush et al. 2000) and adaptive
Gauss—Hermite quadrature—AGHQ—(Pinheiro and Chao 2006) are often consid-
ered. Other alternative methods of estimation were also proposed for this type of
models, such as restricted pseudo-likelihood (Wolfinger and O’Connell 1993) and
penalized quasi-likelihood (Breslow and Clayton 1993). In particular, for the MELRM,
the integral has no analytical solution and the above-mentioned procedures have been
considered with different variants in the model and complexity of implementation;
see, for example, Lesaffre and Spiessens (2001), Capanu et al. (2013) and Demidenko
(2013).

The estimation of MELRM parameters is often carried out to predict the binary
response with future observations (or measurements). In order to evaluate the predic-
tive performance of this model, different indicators are used, such as accuracy (Acc),
sensitivity (Sen) and specificity (Spe); see, for example, Hosmer et al. (2013).

A-relevantissue which should be considered in all statistical modeling, once the esti-
mation procedure is performed, is the influence diagnostic. Particularly, assessment of
the stability of the ML estimates with respect to different schemes of uncertainty in the
model or in the data is a widely studied topic. A technique to conduct this assessment is
the deletion case, which analyzes the stability of the parameter estimates after remov-
ing an observation; see, for example, the classic book by Cook and Weisberg (1982).
For other type of stability studies and biological applications of statistical models,
see Stehlik et al. (2008). However, nowadays, the most studied diagnostic technique
among researchers is local influence, which evaluates the stability of estimates under
small perturbations in the model or data; see Cook (1986). It identifies the presence of
cases that, under small modifications in the model or data, provoke large changes in the
parameter estimates. The local influence technique has been applied to other statistical
models than the original normal linear regression model. Some recent works on local
influence include, for example, elliptical linear regression models (Liu 2000), log-
linear negative binomial models (Svetliza and Paula 2001), missing data models (Zhu
and Lee 2001), multivariate regression models (Diaz-Garcia et al. 2003; Marchant et al.
2016), linear logistic regression models (Hossain and Islam 2003), time series models
under elliptical distributions (Liu 2004), multinomial models (Nyangoma et al. 2006),
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beta regression models (Rocha and Simas 2011), symmetric semiparametric models
(Ibacache-Pulgar et al. 2013), spatial models (Assumpcdo et al. 2014; Bastiani et al.
2015; Garcia-Papani et al. 2018), generalized linear type models (Leiva et al. 2014),
vector autoregressive models (Liu et al. 2015), varying precision models (Santos-Neto
et al. 2016) and survival analysis models (Ledo et al. 2017).

The earliest work using the local influence approach in linear mixed models is
attributed to Lesaffre and Verbeke (1998). As local influence is a likelihood-based
technique, its usage in generalized linear mixed models has the same problem of inte-
grals above mentioned, which was solved by Ouwens et al. (2001). As mentioned,
Zhu and Lee (2001) derived local influence for missing data models and there defined
a type of likelihood displacement which is known as Q-displacement function. Based
on this work, Zhu and Lee (2003) proposed to treat the random effects of general-
ized linear mixed models as missing data and used the conditional expectation of
the complete-data log-likelihood function to estimate the model parameters and to
detect local influence. An important issue in the local influence analysis corresponds
to the selection of an appropriate perturbation. This is because, in general, it is known
that to arbitrarily perturb the model or data can lead to unreliable results in relation
to observations detected as influential. For this purpose, Zhu et al. (2007) proposed a
methodology for selecting an appropriate perturbation, which is based on the observed-
data log-likelihood function. Chen et al. (2010) used this perturbation selection for
local influence analysis in generalized linear mixed models. The most recent work
on local influence for generalized linear mixed models is attributed to Rakhmawati
et al. (2017). However, note that within the family of generalized linear mixed mod-
els we have members with a discrete response, as particular cases. In these cases,
it is not possible to perturb the response as usual in local influence techniques. To
our best knowledge, local influence studies to detect how a binary response affects
the estimates and predictive performance of the MELRM have not been addressed to
date.

The MELRM is widely used in different areas to analyze data with binary response,
covariates and random effects. Due to the discrete nature of this response, taking
only zero and one values, standard local influence diagnostic techniques do not apply
for perturbing the response of this model. Then, one can perturb the probability of
success associated with the binary response of the MELRM. Therefore, the novelty
of the present work is in deriving local influence for the MELRM, perturbing the
associated probability of success. We use the local influence technique based on the
Q-displacement function and an appropriate perturbation strategy for the probability
of success in order to evaluate local influence of the measurements (observations of
the binary response), but not of the subjects. With this perturbation strategy, we are
able to detect influential observations which can cause disproportionate effects in the
estimates and/or in the predictive performance of the MELRM considering the value
of its binary response. This allows us to avoid misleading ML estimates and to improve
the predictive performance of the model. For more details about the perturbation of
the probability of success, see Sect. 2.5.

The main objective of this paper is to derive a methodology of local influence in the
MELRM to detect how the response affects the estimates and predictive performance of
the model by using an appropriate perturbation of the associated probability of success.
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This objective is conducted to investigate the local influence of binary responses on
the ML estimates of the MELRM parameters and in the predictive performance of this
model by using the Q-displacement function. The diagnostic methodology is evaluated
by Monte Carlo (MC) methods. Furthermore, as illustration, we use two real data sets
related to seeds (unbalanced) and salamanders (balanced). The numerical results of
this study are obtained with the aid of routines implemented by the authors in the R
software, which are available under request; see www.R-project.org and R Core Team
(2016).

The remainder of this article is organized as follows. In Sect. 2, we present the
MELRM and derive a local influence analysis for such a model selecting an appro-
priate perturbation for the probability of success associated with the corresponding
binary response. In Sect. 3, the results of the MC simulation study are presented
to evaluate the performance of the methodology derived in Sect. 2. Illustrations
with two real-world biological data sets of the derived methodology are analyzed
in Sect. 4. Finally, conclusions and proposals for future research are discussed in
Sect. 5.

2 Local influence in the mixed effects logistic regression model
2.1 The mixed effects logistic regression model

Consider the binary responses Y;; with Bernoulli distribution of parameter p;;, for j =
I,...,n;andi =1, ..., I. Consider also that b; is a random vector of dimension p;
with normal distribution of mean 0, and variance—covariance matrix ¥ = X (),
where 0, » 1 is a vector of zeros of dimension p; and y is a vector of unknown variance
and covariance components of dimension p3, with p3 < pa2(p2 + 1)/2. It is assumed
that the conditional distribution of ¥;; given b; belongs to the exponential family with
probability function given by

Pyjb; (ij) = exp <y~10g( by )—10g< 1 )) ()
Ul i i tj 1_ plj 1 _ pl] ’

mean expressed as E(Y;;|b;) = p;; and variance defined as V(Y;;|b;) = p;;j (1 — p;;).
Thus, the MELRM is defined by (1) and by the systematic component

Pij T T
]Og (q) = xl'jﬂ +zijbi’
where log(p;;/(1 — p;j)) is the logit link function and xiTjﬂ + Ziiji is the linear
predictor, with x;; = (x;j1, ... ,)c,-jp,)—r and z;; = (zij1, ..., Zijp2)—r being vectors of
dimension p; and p», respectively, containing values of the corresponding covariates.
Here, B is the vector of unknown regression coefficients to be estimated of dimension
pi.Lety = (BT, )T be a unknown parameter vector of dimension (p; + p3)
and y, = {y;j:j = 1,...,n;,i = 1,..., 1} be the observed data set. Then, the
observed-data log-likelihood function for ¥ is defined as
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I ni
Pij 1
bW y0) = ) log / exp (yi~log( ) — 1og< ))
° ; RP2 j1:[1 / 1 — pij 1— pij
1
- —1/2 ——pTx-1p. .
X @yl det(X) CXp( 2b1 X bl> db; | . )

For more details about the MELRM, see the books by Agresti (2003), Jiang (2007)
and Hosmer et al. (2013).

Note that the function defined in (2) contains a multiple integral which has no
analytical solution. Hence, a procedure that approximates this integral is required
to solve it. In this work, the ML estimation of ¥ is conducted using the function
glmer of an R package named 1me4, which uses AGHQ, but particularly we use
25 quadrature points. This procedure is only available when the model includes one
random intercept. For two or more random effects, we use AL.

Deriving the local influence technique from (2) is not an easy task, because the
integral has a high dimension and no analytical solution. Zhu and Lee (2003) treated
the random effects as a missing (unobserved) data set, y, = {b;:i = 1,..., I}, and
defined y. = (y,, y,) as the complete data set, where y, is the observed data set,
as mentioned. In general, if the size of the involved integral is large, the standard
numerical integration methods may be intractable. In addition, in some cases, a large
number of quadrature points can be required and then the AGHQ may slowly con-
verge; see Lesaffre and Spiessens (2001). Thus, the ML estimates might be calculated
alternatively by MC methods, such as the expectation—-maximization (EM) algorithm;
see Dempster et al. (1977) and McCulloch (1997). However, the MC methods are
computationally intensive as well and may require many iterations with slow conver-
gence; see Molenberghs and Verbeke (2005). Because of the ease of implementation
and since we do not detect convergence problems, quadrature methods are used in
this work. Then, the complete-data log-likelihood function for ¥ of the MELRM is
expressed as

1 n;
: i 1 1 _
ora = LB o (25 v () -
ij

i=1 | j=1 ’/

—% log(det(Z))} , 3)

which is a relatively simple expression for local influence analysis; see Zhu and Lee
(2003).

2.2 The local influence technique
Let Y. = (Yo, Y,) be the random vector associated with the complete data set y. =

I
(¥o» ¥u)- Consider a perturbation vector w € 2 C RY, withg = n = ) n; in
i=1
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our case, such that £(¥, ®; y.) is the complete-data log-likelihood function of the
perturbed model. It is assumed that there is a non-perturbation vector @ € £2 C R”,
such that £(¢, wo; y.) = £(¥; y.), for all Y. Let ¥ (@) be the ML estimate of ¥ for
the perturbed model that maximizes Q (¥, a))|¢:$ =ElL{W,w; Y |Y, = yo)]|¢:$,
where 1/#\ is the ML estimate of ¥ and the expectation is calculated with respect to
the conditional distribution of Y, = b; given Y, = y, (note that, for example, the
notation “|4—,”" means that the corresponding function is evaluated at A = a). To
assess the influence of ® € £2 C R”, Zhu and Lee (2003) used the Q-displacement
function given by

fo@=2(0(F) - 0¥ @)), “)

where Q(¥) = QY. @)y _j yop, a0 Q(¥ (@) = O, ®)|y_j (4, Function
(4) is considered a metric of the difference between @ and i}(w) with respect to the
objective function Q(¥) ly—3> which is greater than or equal to zero and achieves a
global minimum at @g. Then, similarly to Zhu and Lee (2001), the influence graph of
fo(w) is defined as a(w) = (wT, fo (w))T. Note that the normal curvature C fo.h of
o(w) in wg, in the direction of a unit vector 2 € R", is used to summarize the local
behavior of fp(w) and expressed as

Cron=—20" 0t =207 AL (~0y (¥))" Awyh, (5)
where
b, _ o @)
90T Jwdw !

is a semi-positive definite matrix of dimension n X n,

. 30(¥)
_ == "7 6
Oy (W) == 5,7 (©)
is a semi-positive definite matrix of dimension (p; + p3) x (p1 + p3) and
20 (¥, »)
Ay, = LU ©) )

W0 |y—g 0o

is the perturbation matrix of dimension (p; + p3) X n.
Following Zhu and Lee (2001), the normal curvature given in (5) is invariant under

reparametrization of ¥ and it can assume any value. Thus, based on Poon and Poon

(1999) and the expression given in (5), Zhu and Lee (2001) proposed the conformal

normal curvature of «(®) in wy, in the direction of a unit vector & € R", by means

of

Cro.h

(<20, ®

Bfon =
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which, in addition to be invariant under reparametrization of ¥, is invariant under
conformal reparametrization of @, and it can assume any value in the closed interval
[0, 1].

Note that —20,, = 2AIO(— Q,,,(l/r))_lAwo may be expressed in terms of its
spectral decomposition, that is, by

M
204, =Y _ *meyem. )

m=1
where (A1, e1), ..., (Aym, ey) are pairs of eigenvalues and eigenvectors such that
M= =>Ay > Ayt1 = =Xr, =0and (ey, ..., ey) is an orthonormal basis

of RM | with M = p1 + p3. Then, the normal curvature is defined in the direction of
the observation i by

M
Crom =D M, (10)
m=1

with e, being the ith component of e,, and h; being a vector of dimension n with
the ith component equal to one and the remaining values equal to zero. According to
Zhu and Lee (2001), the observation i is influential if

By, n; > B +2SD(B),

where B = > By, n;/n and SD(B) is the standard deviation of By, ;. ...,
By, h,, with By, p, denoting the conformal normal curvature in the direction of the

observation i, which is given from (8) and By, n;, = Cyy.n; /tr(=2 Qwo), fori =
1,...,n, with —ZQ and CfQ,hl- defined in (9) and (10), respectively.

2.3 Approximations of — Qw(’u\l) and Ay,

Since the conditions of regularity allow the exchange between integration and differ-
entiation, the matrices given by (6) and (7) can be expressed as

.~ %L (Y; Y|Yo =y,
and ) ( )
_ L 107(0; YC|Y0=y0
Ay, =E ( P ) n:%w:wo, (12)

respectively. However, the conditional expectation presented in the blocks of (11) and
(12) cannot be calculated in closed form. Consequently, Zhu and Lee (2003) used the

classic MC integration method to solve it of the following way. Let { yl(f) s=1,...,85}
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be data generated from the conditional distribution of Y, = b; given Y, = y,,. Then,

R 1 S 0% (W; Yoo yff))
BBy O -
and
1 S 0% ('ﬁ, ®; Yo, yff))
LR My 2 IYow' ‘.p:@,w:wo’

s=Mp+1

where M corresponds to the number of observations discarded to avoid an effect of
dependence produced by the Metropolis—Hastings (MH) algorithm in the first itera-
tions. Note that a usual value considered in practice is My = 1000 observations. The
conditional distribution of Y, = b; given Y, = y, has a probability function which
is proportional to

exp —%biTE*Ibi + iyij (x;ﬂ + zl-iji> —log (1 +exp (xiTj,B + Z;bi)) i
j=1

so that generating the observations { yl(f): s = 1,..., S} is not trivial. Then, Zhu and
Lee (2003) used the MH algorithm to generate observations as described next. The
MH algorithm is initialized from an arbitrary value bfo) , which does not affect mostly
the results due to that this algorithm works with a large number of observations. In
addition, since M observations are discarded, this also does the initial value bl(o)
not be relevant; see details in Robert and Casella (1999). In the rth iteration of the
algorithm, the following steps must be considered:

1. Given the current value of bfr_l) , generate a new candidate as b; ~ N, (blgr_l),
I7(0,,x1)), where, following the same notation as in Zhu and Lee (2003) and Xu
et al. (2006),

-1
i exp (x;;ﬁ + z;;b,-)

I; (0pz><l) = F(b,‘) |l7,:01;2><1 = Z‘fl +
j=1 (1 + exp (x;ﬂ + z;b,—))

LT
2%i%ij

bi :0[)2 x1

2. Obtain u from U ~ U(0, 1), that is, from a uniform distribution in [0, 1]. If
u < a(bgr_l), b;), then b;r) = b;, otherwise, consider bl@ = b;r_l), where

)

. , Yoy, (Bi, V)
o (b,( b bi) = min pbj:fyo y(b,(.rl), 'ﬁ)

is the probability of accepting a new candidate.
3. Repeat steps (1) and (2) for r + 1.

@ Springer



Diagnostics in mixed effects logistic models

2.4 Second-order derivatives of — Q.,,(iil)

To calculate the conformal normal curvature, it is necessary to obtain the derivatives
included in — Q. (¥) and Ag,. However, we present only the derivatives related to

— Q,/, (;/; ), since they do not depend on the proposed perturbation strategy. Thus, from
(3), the derivatives involved in — Q,/, (17;) are given by

T = 27
dpop i=1 j=1 (1 +exp (xiTjﬁ + z;h))
I (¥sy.) 0% (¥:ye) _
—aﬂa)’T — YUpixp3>s 8)’8,3T — Vp3Xpre
Py _ ! (o) (=" Xlzb-sz—l ®x!
8y8yT 2 — 1Y )

where ® denotes the Kronecker product of matrices; see Caro-Lopera et al. (2012).

2.5 Appropriate perturbation for the probability of success

As mentioned, due to the binary nature in the response of the MELRM, standard
local influence methods do not apply for perturbing this response. Then, to evaluate
local influence of the measurements in the ML estimates and/or in the predictive
performance of the MELRM, we perturb the probability of success associated with
this binary response. We use the local influence technique based on the Q-displacement
function defined in Sect. 2.2 and an appropriate perturbation strategy as detailed below.
The methodology for local influence analysis derived here is based on the strategy of
an appropriate multiplicative perturbation of the probability of success (AMPPS). This
methodology allows us to detect influential observations evaluating how the binary
response can cause disproportionate effects in the estimates and/or in the predictive
performance of the MELRM, avoiding misleading about them.

Note that the AMPPS strategy allows us to detect the influence of each measurement
for each subject, that is, the influence of measurements is evaluated, but not of the
subjects. As we are using a model for repeated measurements, a measurement done to
a subject may be detected as influential, but another measurement of the same subject
could be not influential. Thus, with the AMPPS strategy, we are able to judge whether
an observation is influential in the results or not. This is particularly of interest in the
MELRM to study the effect of influential observations in the ML estimates of the
model parameters and in its predictive performance by means of the Acc, Sen and Spe
indicators. However, if we evaluate the influence of the subjects, we are unable to know
whether a measurement (binary response) can cause or not disproportionate effects
in the ML estimates and/or in the predictive performance of the MELRM. We could
evaluate whether a subject is influential or not deleting this case from the analysis; see
Xu et al. (2006).
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Similarly to Nyangoma et al. (2006), a form to evaluate the perturbation of a binary
response in the MELRM is through a strategy of multiplicative perturbation of the
probability of success (MPPS) given by

pl-j(a),-j)zp,-ja)ij; a),’jE(O, 1], j:l,...,n,-, i:l,...,]. (13)

Thus, according to Chen et al. (2010), the joint probability function of Y. under (13)
is given by

- Pij (wij) 1
y ﬂfnl (( P\ = pij () 1= pij (i)
U JRNELE (det (X))
2 i 1 2 g )

whose non-perturbation vector is @wg = 1,x1, where 1,1 is a vector of ones of
dimension n, with n = Zi[:l n;, such that py_(y.; ¥, wo) = py.(y; ¥), for all ¢.
Consider the perturbed model given by P = {py_ (y.; ¥, ®): @ € 2 C R"}. Then, the
Fisher expected information matrix of dimension n x n with respect to the perturbation
vector @ under P is expressed as

G(w) = (gij(@)), (14)

where

4 (@) —E <8log (py. (ye: ¥, @)) dlog (py. (e ¥, w)))

aa)i aa)j

and the expectation is calculated with respect to py.(y.; ¥, w). The diagonal elements
of the matrix G (w) defined in (14) are the variances of the score vector with respect to
the components of w, which indicate the amount of perturbation introduced by the cor-
responding components of w. The off-diagonal elements of G (®) are the covariances
of the score vector with respect to the components of @, which represent the associ-
ation between the different components of @. Note that a perturbation is appropriate
if it satisfies the following conditions: (i) G (w) is full rank in a small neighborhood
of wg, to avoid redundant components of w; (ii) the off-diagonal components are as
small as possible, to avoid a strong association between the components of @, and
consequently, perturbations with strong ambiguous effects; and (iii) the differences
between the components of the diagonal are as small as possible, so that the perturba-
tions introduced by the components of @ are uniform. Based on (i)—(iii), Chen et al.
(2010) defined an appropriate perturbation satisfying that G (wo) = cI,,, where ¢ > 0.
In applications, although G (@) # cI,, we can always choose a new perturbation
vector @ defined by

@ =)+ G(@0)"*(@ — ), (15)
that is, we consider the perturbed model P = {py. o ¥, 0@): o € 2 c R,
where @(@) = @y + G(wo) ™ /2(@ — wp) and 2 = {wo + G(wo)/* (@ — wp): @ €
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£2 C R"}. Under P , we have G(wo) = cI,. In our case, for i = j, the derivatives
related to G(wg) are given by

dlog (py. (ye: ¥, @) dlog (py. (ye: ¥, @)
Jw; dw;

=yij (l — exp (2 (x;;ﬂ + z;b;))) + exp (2 (x;ﬂ + z;;b;)),

W=

whereas for i # j,

dlog (py. (ye: ¥, )) dlog (py. (ye: ¥. @) o
30),‘ Ba)j w=wo '
Then, based on (15), the AMPPS strategy is defined as
Pij (i} (@) = pij (wijo + gij (@) V2 (@i — wijo)) . (16)

The expectation involved in the blocks of G (wg) cannot be calculated in closed form.
Consequently, Chen et al. (2010) used the classic MC integration method as follows.
Generate a sample {blm; t = 1,...,T} from a normal distribution of mean vector
0,,x1 and covariance—variance matrix X, approximating the elements of G(wo) by

o (wo)%% T dlog (pyc (yo,bﬁ’);v/f,w)) 3 log (pyc (yovbf'):w,w))
t=1

3&),‘ Swj 'df:;/;,w:wo.

Note that, in the MPPS strategy presented in (13), we do not impose restrictions
on the perturbation vector, whereas in the AMPPS strategy given in (16), the pertur-
bation vector depends on G, guaranteeing an appropriate perturbation. As mentioned,
identification of influential cases is a very important step in data analysis. However,
arbitrarily perturbing the model or data can lead to unreliable conclusions with respect
to influence diagnostics. For example, considering unbalanced cluster (subjects) sizes
in the perturbation scheme related to case-weights among clusters may lead to the inac-
curacy identification of influential groups among all groups; see Chen et al. (2010).

2.6 Second-order derivatives of A,

Under (13), the complete-data log-likelihood function of the perturbed model is given
by

i=1 | j=1 1= pij (i) — pij (i)

1 1
- Eb,Tz*‘bi -3 log (det (X))
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The non-perturbation vector is @y = 1,x1. Then, the derivatives involved in A, are

920 (w, W; yc)
0Bow;;

9%¢ (xﬁ, ®; yc)

T T

W=w(

=0p,x1.
W=w(

a7

Under (16), the complete-data log-likelihood function of the perturbed model is given
by

(. @) = XI: Ii [ylog (%) ~loe (l—lm(lwz](?vu))”

i=1 | j=1

1 1
- EbiTE*lb,- — 5 log (det () ] .

The non-perturbation vector is @y = @wp = 1,x1. Then, the derivatives involved in
A, are

0% (¥, @: y.)
BIw;;
3 (¥, @ y,.)
3}136~0ij

= &ij (w0)~'/? (yij — 1) exp (x;ﬂ + Ziiji>xij,

D=w(

= 0p3><1- (18)

D=w(

Note that, when y;; = 1, expressions given in (17) and (18) are equal to zero. Thus,
initially we carry out an analysis for observations with y;; = 0. Subsequently, we
alternate the values of y;; and analyze the observations with y;; = 1.

3 Monte Carlo simulation studies
3.1 Simulation model and notations

To illustrate the performance of the proposed methodology, we conduct MC simulation
studies with R = 100 replications each. These studies are based in the MELRM given
by Y;;|b; ~ Bernoulli(p;;) and b; ~ N(0, 02), with systematic component expressed
as

I
10g<1pl/p >=/30+,31x1ij+bi, j=1...,n, i=1...,1, H=Zni,
~ i :

-

(19)
where x1;; = u;; —0.5, with u;; being a value obtained from U ~ U(0, 1). In addition,
Bo and B are the regression coefficients.
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3.2 Scenario of the simulation

Data sets are generated from (19), fixing the true values of the parameters at By = 1,
B1 = 1 and % = 0.5, with sample sizes n = 90 (I = 30,n; = 3), n = 360
(I = 60,n; = 6) and n = 1080 (I = 120,n; = 9). We consider values
of the perturbation given by @;; = 0.75,0.85, 0.95. Perturbed replications of Y;;
under the AMPPS strategy for each data set are generated as follows. For i and
w;j, we generate n; observations of Y;; from a Bernoulli distribution with param-
eter pij(wij(@ij) = pijwij(@ij), where w;j(@;) = 1+ gij(wo) V2 (@;; — 1),
with g;;(wp) being approximated with 77 = 2000 additional observations of b;
generated from the N(0, o'%) distribution. For each replication, the ML estimate of
¥ = (Bo, Bi1, 02)T is obtained by AGHQ with 25 quadrature points. Initial values
for estimating the parameters by AGHQ were considered as follows. Recall the func-
tion glmer of the 1me4 package is used, which employs a two-stage optimization
process. During the first stage, the optimization is carried out over the y parameter,
using starting values by default indicated as “1” for diagonal elements and “0” for
off-diagonal elements of the lower triangular matrix in the Cholesky decomposition,
plus a vector of zeros for the fixed-effect coefficients. Then, both the estimated y and
the starting values for fixed-effect 8 coefficients from the first stage are used as initial
values for the second stage of the optimization. In this second stage, the optimization
is conducted over the y and B. For more details, see documentation of the 1me4
package in https://cran.r-project.org/web/packages/Ime4/lme4.pdf.

The local influence analysis is performed with § — Mo = 400 (S = 500, Mo = 100)
observations of b; generated through the MH algorithm for approximating — Q,/, W)

and Ag,. In addition, as mentioned in Sect. 2.3, the initial value b;o) of b; is not
relevant due to the reasons there indicated. Note that as 7 = 2000 observations
of b; are generated from a normal distribution with zero mean and variance G~ for
approximating the elements g;; (@), where &2 is the ML estimate of o2, Here, we
use the following terminology for the different types of influential cases, in relation to
the observed value of the response or in the estimation procedure. If the observation
is detected as influential and the value of the perturbed response is different from
the value of the original response, the observation is identified as truly influential (TI
hereafter). If the observation is detected as influential and the value of the perturbed
response is equal to the value of the original response, the observation is identified as
false influential (FI hereafter). If the observation is detected as influential independent
of the value of the response, the observation is identified as potential influential (PI
hereafter) in the ML estimate.

3.3 Results of the simulation

Table 1 reports the percentages of detection for each type of influential points in the
simulation studies. For the different ; 7, the percentages of detection of TI, FI and PI
improve considerably as n increases. Specifically, for w;; = 0.75, the percentages of
detection of TI, FI and PI are up to 54%, 65% and 99%, respectively. For w; 7 =0.85,
the percentages of detection of TI, FI and PI are up to 48%, 70% and 96%, respectively.

@ Springer


https://cran.r-project.org/web/packages/lme4/lme4.pdf

A.Tapia et al.

Table 1 Percentages (%) of T~ ~ ~
detection of TI, FI and PI for ! ni @ij =075 @ij =0.85 wij = 0.95

indicated values of the TI FI PI TI FI PI TI FI PI
simulation

90 30 3 37 35 72 34 38 72 31 40 71
34 26 60 32 28 60 33 28 61
39 30 69 38 33 71 35 37 72
360 90 6 43 52 95 34 59 93 28 62 90
29 28 57 34 27 6l 25 25 50
28 24 52 27 17 44 17 18 35
49 43 92 48 41 89 46 41 87
45 30 75 40 34 74 33 31 64
43 42 85 35 40 75 25 43 68
1080 120 9 54 38 92 37 52 89 36 45 81
39 34 73 41 30 71 34 35 69
40 33 73 37 39 76 32 32 64
33 37 70 31 32 63 23 27 50
19 21 40 19 13 32 18 10 28
36 43 79 36 43 79 26 38 64
23 14 37 26 16 42 22 11 33
35 38 73 28 38 66 24 31 55
34 65 99 26 70 96 17 73 90

For @;; = 0.95, the percentages of detection of TI, FI and PI are up to 46%, 73%
and 90%, respectively. Consequently, the percentages of detection of TI and FI are
satisfactory, indicating that the value of the response and its associated probability
of success can determine its influence. In addition, the percentages of detection for
PI are very satisfactory, showing that the proposed methodology is able to detect the
perturbed observations as influential when they really are.

As an alternative way to detect influence in the MELRM, simulation studies can
be performed for global influence analysis by deleting measurements and subjects,
following the work of Xu et al. (2006), which also is based on the Q-displacement
function. Some comments about future research for global influence in the MELRM
are provided in the final section.

4 Numerical illustrations with biological data
4.1 Seeds data

Orobanche is a kind of parasitic plants without chlorophyll that grow on the roots of
many dicotyledonous crop plants. To determine the factors that affect the germina-
tion of the seed for the species Orobanche Aegyptiaca, the following experiment was
performed. A batch of seeds for the varieties Orobanche Aegyptiaca 75 (OA75) and
Orobanche Aegyptiaca 73 (OA73) was spread on plates containing a dilution 1/125
of root extract for bean and cucumber plant. The number of seeds in the batch for the
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combination of seed varieties and root extracts was different, constituting an unbal-
anced data set. The results of the experiment were originally reported by Crowder
(1978). The binary responses corresponding to the germination or non-germination of
the seeds in each plate are considered in this work. See more details on analyses of
these data in Crowder (1978), Breslow and Clayton (1993), Zhu and Lee (2003) and
Chen et al. (2010).

For the binary responses corresponding to the germination or non-germination of
the seeds in each plate, we consider an MELRM given by Y;;|b; ~ Bernoulli(p;;),
with b; ~ N(0, 62) and

Dii
log (1 Up ) = Po + Bix1ij + Baxaij + B3x1ijx2ij + bi,
— pij

j=1...,n; i=1,...,21,n =831,

where xy;; is the observed value of the covariate “variety of the seed” (1 for OA73
and 0 for OA75), x2;; is the observed value of the covariate “type of root extract” (1
for beans and 0 for cucumber), x1;;x7;; is the interaction term, and o, B1, B2, B3 are
the regression coefficients.

The ML estimate of ¥ = (Bo, B1, B2, B3, 02) " is obtained by AGHQ with 25
quadrature points, and their values are presented in Table 2. The local influence analysis
is carried out with § — My = 9000 (S = 10,000, My = IOOO)AObservations of b;
generated through the MH algorithm for approximating — Qw('ﬁ) and Ag,. Also,
T = 2000 observations of b; are generated from a normal distribution with zero mean
and variance 2 for approximating the elements g;; (o), where 52 is the ML estimate
of % as defined in Sect. 3.2.

Figure 1a, b shows index plots of the conformal normal curvature for local influence
with (a) y;; = Oand (b) y;; = 1, respectively, under the AMPPS strategy. For y;; = 0,
we have the observations: #456 to #476 of plate (subject) #12; #532 to #548 of plate
#13; and #646 to #678 of plate #15 are detected as influential. For y;; = 1, the
observations: #40 to #62 of plate #2; and #102 to #124 of plate #3 are detected as
influential. For comparison, under the MPPS strategy, Fig. 1c, d shows index plots of
the conformal normal curvature for local influence with (a) y;; = 0 and (b) y;; = 1,
respectively. From this figure, note that the same results are obtained for both strategies.
In order to evaluate the magnitude of the impact exerted in the ML estimates by
individual influential observations or a set of them, we compare the ML estimates
with those obtained by dropping such observations using the percentage error (PE)
given by

PE = |(Yx — ) /] x 100%,

where 1//}/( is the ML estimate of v obtained from the fit of the model with all obser-
vations and {ﬁ\: is the ML estimates of ¥ obtained from the fit of the model excluding
individual influential observations or a set of them, if these observations belong to the
same subject, fork = 1,...,5.

Table 2 provides the results for two of the combinations that show the largest values
of the PE, for each strategy. For the combinations that present the first largest values of
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Table 2 Estimates, p-values and PE for seeds data

Dropped observations Plates Parameter Estimate p-value PE
None - Po —0.548 0.001 -
A1 0.081 0.776 -
B 1.340  <0.001 —
B3 -0.821 0.037 -
o 0.249 - -
AMPPS strategy
40-62, 102-124, 456476, 532-548, 646-678 2,3,12, 13,15 By —1.998 0.009 264.356
B1 1.215 0.253  1409.102
B 5.149  <0.001 284.421
B3 —4.570 0.003  456.339
o 1.523 - 512.803
40-62, 102-124, 456-476, 646-678 2,3,12,15 Bo —1.908 0.006 248.051
B1 1.165 0.220  1346.567
B 4.198 <0.001 213.411
B3 —3.644 0.007 343.691
o 1.353 - 442.598
MPPS strategy
40-62, 102-124, 456476, 532-548, 646-678 2,3,12,13,15 By —1.998 0.009 264.356
A1 1.215 0.253  1409.102
B 5.149  <0.001 284.421
B3 —4.570 0.003  456.339
o 1.523 - 512.803
40-62, 102-124, 456476, 646-678 2,3,12,15 Bo —1.908 0.006 248.051
B 1.165 0.220  1346.567
B 4.198 <0.001 213.411
B3 —3.644 0.007 343.691
o 1.353 - 442.598

the PE, note that by dropping the combinations #40 to #62, #102 to #124, #456 to #476,
#532 to #548, and #646 to #678, the ML estimates provide very large variations, being
them affected by the AMPPS strategy. In addition, the p-value associated with B3 isless
than 0.01, becoming the interaction significant at 1% instead of 5% before the removal.
However, for the other estimates, despite the large variations, no changes are obtained
in relation to the significance of the covariates. For the MPPS strategy, we observe
the same results. For the combinations that present the second largest values of the
PE, note that for both strategies when dropping the combinations #40 to #62, #102 to
#124, #456 to #476, and #646 to #678, the ML estimates present very large variations,
being them affected by the respective strategies. Furthermore, once again the p-value
associated with B3 is less than 0.01, becoming the interaction significant at 1% instead
of 5% before the removal. Nevertheless, for the other estimates, despite the large
variations, no changes are detected in relation to the significance of the covariates. Note
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Fig.1 Index plots of conformal normal curvature for seeds data. a y;; = O andb y;; = 1, under the AMPPS
strategy and ¢ y;; = 0 and d y;; = 1, under the MPPS strategy

that, in this application, both MPPS and AMPPS strategies did not show differences in
relation to the points detected as influential. Then, the combinations were the same and,
therefore, the p-values and PE also. To determine how the removal of combinations
of influential cases affects the predictive performance of the model, we calculate the
Acc, Sen and Spe indicators. Table 3 reports these results. For the data set with all
observations, values for the Acc, Sen and Spe indicators are 0.637, 0.644 and 0.629,
respectively. Hence, as noted, removal of combinations of influential cases leads to
substantial increase in the predictive indicators. In summary, the results of the proposed
methodology lead to very large variations in the ML estimates of the parameters, and
to changes related to significance of a covariate of the model. Moreover, these results
imply a substantial increase in the Acc, Sen and Spe indicators, improving considerably
the predictive performance of the model, when the observations detected as influential
are removed.
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4.2 Salamander data

A mating experiment of salamanders conducted in the summer season was presented
by McCullagh and Nelder (1983). This experiment involves two populations of sala-
manders: Rough Butt (RB) and Whiteside (WS). In their natural habitat, these two
populations are geographically isolated from each other. The main question is whether
barriers to interbreeding have evolved so that matings within the population are more
successful than those between populations. A total of 40 salamanders were used from
the two populations, with ten males and ten females. Each female was paired six times
with three males from her own population and three males from the other, constituting
a balanced data set. Then, binary responses corresponding to the success or failure of
the mating were obtained. These data have been studied also by other authors; see,
for example, Breslow and Clayton (1993), Larsen et al. (2000) and Jiang (2007). We
consider an MELRM to describe these data as follows.

Let Y;; be the response for mating female i and male j. Then, Yij|bf, b;“ ~

Bernoulli(p;;), with bf ~ N(O, ofz) and b;“ ~ N(O, O'I%I) being independent, and

pii
log <-1 Up > =po+ ﬂlxlij + ,32)62,']' + /33x1in2ij +b1f+ bljﬂ’
— pij
j:l,...,é, l=17,20,n=120,

where x1;; is the observed indicator covariate of females in the population WS (1 for
WS and 0 for RB), xy;; is the observed covariate of males in the population WS (1
for WS and 0 for RB) and x;;x;; is the interaction term. Here, By, B1, B2, B3 are the

regression coefficients and bf

, bf;‘ are the random effects associated with females or
males in the pair, respectively. The ML estimate of ¥ = (Bo, B1, B2, B3, afz, or%l)T is
obtained by AL, and their values are presented in Table 4.

The local influence analysis is carried out again with § — My = 9000 (S =
10,000, My = 1000) observations of bif and b‘jn generated through the MH algo-
rithm for approximating — QW(J) and A,,,. Furthermore, once again, we consider
T = 2000 observations of blf generated from a normal distribution with zero mean

and variance 6}2, as well as T = 2000 observations of b;“ generated from a normal

Table 3 Acc, Sen and Spe indicators for seeds data

Dropped observations Plates Sen Spe Acc
None - 0.644 0.629 0.637
AMPPS strategy

40-62, 102-124, 456476, 532-548, 646-678 2,3,12,13,15 0.737 0.754 0.745
40-62, 102124, 456-476, 646-678 2,3,12,15 0.737 0.718 0.728
MPPS strategy

40-62, 102-124, 456476, 532-548, 646-678 2,3,12,13,15 0.737 0.754 0.745
40-62, 102124, 456476, 646-678 2,3,12,15 0.737 0.718 0.728
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Fig.2 Index plots of conformal normal curvature for the salamander data: a y;; = O and b y;; = 1, under
the AMPPS strategy, and ¢ y;; = 0 and d y;; = 1, under the MPPS strategy

distribution with mean zero and variance 6}%, for approximating the elements g;; (@o),
where 57 and 52 are as defined in Sect. 3.2.

For the AMPPS strategy, Fig. 2a, b shows index plots of the conformal normal
curvature for local influence with y;; = 0 and y;; = 1, respectively. For y;; = 0,
the pairs (1,11), (3,11), (4,15), (6,7), (17,2) and (19,4) are detected as influential,
but if y;; = 1, the pairs (7,9), (12,17), (13,16), (15,18) and (16,13) are identi-
fied as influential. For comparison, under the MPPS strategy, Fig. 2c, d displays
index plots of the conformal normal curvature for local influence with y;; = 0
and y;; = 1, respectively. For y;; = 0, the pairs (17,2) and (19,4) are no longer
detected as influential, whereas for y;; = 1, the pair (20,3) is considered as influ-
ential, in addition to the cases already considered as influential by the AMPPS
strategy.

Table 4 reports the results for the combinations of pairs that present the largest
values of PE for each strategy. We observe that by dropping the combination of
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Table 4 Estimates, p-values and PE for salamander data

Dropped (female, male) observations Parameter Estimate p-value PE
None Bo 1.335 0.042 -
B1 —2.940 0.003 -
Ba —0.422 0.525 -
B3 3.181 0.003 -
of 1.255 - -
o™ 0.269 - -
AMPPS strategy
(1,11), (3,11), (4,15), (6,7), (7,9), (12,17) Bo 2.211 0.066 65.549
B1 —4.382 0.011 49.015
B2 0.255 0.781 160.337
B3 3.210 0.017 0.904
of 2.383 - 89.860
o™m 0.609 - 126.874
MPPS strategy
(1,11), 3,11), (4,15), (7,9), (12,17), (16,3) Bo 1.787 0.106 33.845
B1 —4.046 0.014 37.611
B 0.526 0.557 224.644
B3 2.809 0.033 11.714
of 2.350 - 87.292
o™ 0.627 - 133.613

pairs (1,11), (3,11), (4,15), (6,7), (7,9), (12,17), the estimates of By, B1, P2, af2
and 01%1 provide variations which are up to approximately 160%, for the AMPPS
strategy. For comparison, under the MPPS strategy, we note that by removing the
combination of pairs (1,11), (3,11), (4,15), (7,9), (12,17), (16,3), the estimates of By,
B1, B, af2 and arfl present variations which are up to approximately 224%. Notice
that, in this application, differences between the points detected by both MPPS and
AMPPS strategies were obtained. Therefore, the removal of combinations produced
different effects with both strategies, noting that the points detected by the AMPPS
strategy are more influential in terms of p-values and PE values. With respect to
the predictive performance of the model, Table 5 presents the results of the Acc,
Sen and Spe indicators. Observe that by dropping the combination of pairs (1,11),
(3,11), (4,15), (6,7), (7,9), (12,17), the Acc, Sen and Spe indicators increase approx-
imately 10%, for the AMPPS strategy. In addition, for the MPPS strategy, note that
by removing the combination of pairs (1,11), (3,11), (4,15), (7,9), (12,17), (16,3),
the Acc, Sen and Spe indicators increase approximately 8%. In summary, the results
of the proposed methodology lead to large variations in the ML estimates, but not
to inferential changes. Furthermore, the detection and removal of influential obser-
vations allowed a considerable improvement in the predictive performance of the
model.
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Table5 Acc, Sen and Spe indicators for salamander data

Dropped (female, male) observations Sen Spe Acc
None 0.814 0.820 0.816
AMPPS strategy

(1,11), (3,11), (4,15), (6,7), (7,9), (12,17) 0.912 0.913 0.912
MPPS strategy

(1,11), (3,11), (4,15), (7,9), (12,17), (16,13) 0.896 0.894 0.895

5 Conclusions and future research

In this article, we derived a perturbation strategy for the binary responses of the mixed
effects logistic regression model. This strategy allowed us to investigate the influence
of these responses in the maximum likelihood estimates and in the predictive per-
formance of the model. The derived strategy was studied using the local influence
technique based on the Q-displacement function presented by Zhu and Lee (2003).
Due to the discrete nature of binary response, taking only zero and one values, standard
local influence diagnostic techniques do not apply for perturbing the response of this
model. The proposed strategy corresponds to an appropriate multiplicative perturba-
tion of the probability of success associated with this response, as a form of evaluating
the perturbation in the response. It should be noted that it is possible to perturb the
probability of success in different ways, but an immediate form is the multiplicative
perturbation. However, since to arbitrarily perturb the model or the data may lead to
unreliable results about local influence, the appropriate perturbation of the probabil-
ity of success was considered. A very important point of the proposed perturbation
strategy is that it allowed us to investigate the influence of binary responses in the
predictive performance of the mixed effects logistic regression model, converting it
into a powerful diagnostic tool when the purpose of the statistical analysis is the pre-
diction. The proposed perturbation strategy permitted us to investigate the influence
of individual responses or of sets of them, but not of the subjects.

From the results of the illustrations with two biological data sets, we showed that it is
possible to detect influential observations of the binary responses that allow us to avoid
misleading maximum likelihood estimates and to improve the predictive performance
of the model, obtaining better results with the appropriate multiplicative perturbation
of the probability of success, in both balanced and unbalanced data sets. It should be
noted that these conclusions are based on the percentage error analysis, considering
the individual influential observations or sets of them, as a way of taking into account
their joint effect.

From the results of the Monte Carlo simulation, we showed that it is possible to
detect the perturbed observations as influential, providing additional information with
respect to the nature of the influence. Thus, local influence diagnostics can be estab-
lished by both the value of binary response and the probability of success. Simulations
and illustrations were carried out in two stages: first, when the values of the binary
responses assume the value equal to zero and second, when the values of the binary
responses assume the value equal to one. However, this procedure can be automated.
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As arecommendation, if one want to select one diagnostic tool for the mixed effects
logistic regression model, our research showed that the proposed methodology is useful
in this selection. Thus, it allows the practitioners to obtain valuable information about
maximum likelihood estimates, predictive performance and binary responses that need
additional scrutiny in this type of models, enabling us to get a better perspective on
the data analytic consequences when influential observations are detected.

As an alternative way to detect influence, global influence analysis for the mixed
effects logistic regression model can be performed by deleting measurements and sub-
jects, following the work of Xu et al. (2006), which also is based on the Q-displacement
function. This will allow us to contrast the results of local influence proposed in the
present work with a global influence study in a future work.
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