A Lefschetz coincidence theorem for singular varieties (2018)
- Authors:
- Brasselet, Jean Paul - Aix-Marseille Université (AMU)
- Libardi, Alice Kimie Miwa - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
- Monis, Thais Fernanda Mendes - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
- Rizziolli, Elíris Cristina - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
- Saia, Marcelo José

- Autor USP: SAIA, MARCELO JOSÉ - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-319-73639-6_17
- Subjects: TEORIA DAS SINGULARIDADES; TEOREMA DO PONTO FIXO
- Keywords: Coincidence; Lefschetz fixed point theorem; Intersection homology; Singular varieties
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Singularities and foliations : geometry, topology and applications
- ISSN: 2194-1009
- Volume/Número/Paginação/Ano: 553 p
- Conference titles: Brazil-Mexico Meeting on Singularities - BMMS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BRASSELET, Jean Paul et al. A Lefschetz coincidence theorem for singular varieties. Singularities and foliations : geometry, topology and applications. Tradução . Cham: Springer, 2018. . Disponível em: https://doi.org/10.1007/978-3-319-73639-6_17. Acesso em: 26 jan. 2026. -
APA
Brasselet, J. P., Libardi, A. K. M., Monis, T. F. M., Rizziolli, E. C., & Saia, M. J. (2018). A Lefschetz coincidence theorem for singular varieties. In Singularities and foliations : geometry, topology and applications. Cham: Springer. doi:10.1007/978-3-319-73639-6_17 -
NLM
Brasselet JP, Libardi AKM, Monis TFM, Rizziolli EC, Saia MJ. A Lefschetz coincidence theorem for singular varieties [Internet]. In: Singularities and foliations : geometry, topology and applications. Cham: Springer; 2018. [citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/978-3-319-73639-6_17 -
Vancouver
Brasselet JP, Libardi AKM, Monis TFM, Rizziolli EC, Saia MJ. A Lefschetz coincidence theorem for singular varieties [Internet]. In: Singularities and foliations : geometry, topology and applications. Cham: Springer; 2018. [citado 2026 jan. 26 ] Available from: https://doi.org/10.1007/978-3-319-73639-6_17 - Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3
- Bi-Lipschitz 'alfa'-triviality of map germs and Newton filtrations
- Poliedros de equisingularidade de germes pre-quase homogeneos
- Affine focal points for locally strictly convex surfaces in 4-space
- Polar multiplicities and Euler obstruction of the stable types in weighted homogeneous map germs from Cn to C³, n ≥ 3
- Affine focal sets of codimension-2 submanifolds contained in hypersurfaces
- On modified 'C POT. L'-trivialization of 'C POT. L+1'-real germs of functions
- Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces
- Affine metric for locally strictly convex manifolds of codimension 2
- A presentation matrix associated to the discriminat of a co-rank one map-germ from 'C POT. N' to 'C POT. N'
Informações sobre o DOI: 10.1007/978-3-319-73639-6_17 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
