Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces (2004)
- Authors:
- Autor USP: SAIA, MARCELO JOSÉ - ICMC
- Unidade: ICMC
- Assunto: SINGULARIDADES
- Language: Inglês
- Source:
- Título: Glasgow Mathematical Journal
- ISSN: 0017-0895
- Volume/Número/Paginação/Ano: v. 46, p. 121-130, 2004
-
ABNT
SAIA, Marcelo José e TOMAZELLA, João Nivaldo. Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces. Glasgow Mathematical Journal, v. 46, p. 121-130, 2004Tradução . . Acesso em: 25 jan. 2026. -
APA
Saia, M. J., & Tomazella, J. N. (2004). Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces. Glasgow Mathematical Journal, 46, 121-130. -
NLM
Saia MJ, Tomazella JN. Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces. Glasgow Mathematical Journal. 2004 ; 46 121-130.[citado 2026 jan. 25 ] -
Vancouver
Saia MJ, Tomazella JN. Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces. Glasgow Mathematical Journal. 2004 ; 46 121-130.[citado 2026 jan. 25 ] - Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3
- Bi-Lipschitz 'alfa'-triviality of map germs and Newton filtrations
- Poliedros de equisingularidade de germes pre-quase homogeneos
- Affine focal points for locally strictly convex surfaces in 4-space
- Polar multiplicities and Euler obstruction of the stable types in weighted homogeneous map germs from Cn to C³, n ≥ 3
- Affine focal sets of codimension-2 submanifolds contained in hypersurfaces
- On modified 'C POT. L'-trivialization of 'C POT. L+1'-real germs of functions
- Affine metric for locally strictly convex manifolds of codimension 2
- A presentation matrix associated to the discriminat of a co-rank one map-germ from 'C POT. N' to 'C POT. N'
- A Lefschetz coincidence theorem for singular varieties
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
