On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph (2018)
- Authors:
- USP affiliated authors: PAVA, JAIME ANGULO - IME ; GOLOSHCHAPOVA, NATALIIA - IME
- Unidade: IME
- DOI: 10.3934/dcds.2018221
- Assunto: EQUAÇÃO DE SCHRODINGER
- Keywords: Nonlinear Schrödinger equation; point interaction; self-adjoint extension; deficiency indices; orbital stability; standing wave; star graph; power nonlinearity; analytic perturbation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Springfield
- Date published: 2018
- Source:
- Título: Discrete & Continuous Dynamical Systems - A
- ISSN: 1553-5231
- Volume/Número/Paginação/Ano: v. 38, n. 10, p. 5039-5066, 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, v. 38, n. 10, p. 5039-5066, 2018Tradução . . Disponível em: https://doi.org/10.3934/dcds.2018221. Acesso em: 13 fev. 2026. -
APA
Pava, J. A., & Goloshchapova, N. (2018). On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, 38( 10), 5039-5066. doi:10.3934/dcds.2018221 -
NLM
Pava JA, Goloshchapova N. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph [Internet]. Discrete & Continuous Dynamical Systems - A. 2018 ; 38( 10): 5039-5066.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3934/dcds.2018221 -
Vancouver
Pava JA, Goloshchapova N. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph [Internet]. Discrete & Continuous Dynamical Systems - A. 2018 ; 38( 10): 5039-5066.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3934/dcds.2018221 - Stability of standing waves for NLS-log equation with δ-interaction
- Stability properties of standing waves for NLS equations with the δ′-interaction
- Ground states for coupled NLS equations with double power nonlinearities
- Spectral instability for NLS equations on metric graphs
- Dynamical and variational properties of the NLS-δs′ equation on the star graph
- A nonlinear Klein–Gordon equation on a star graph
- On the standing waves of the NLS-log equation with a point interaction on a star graph
- Schrödinger operators with point interactions
- Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph
- Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations
Informações sobre o DOI: 10.3934/dcds.2018221 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2897409.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
