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ABSTRACT. We study the nonlinear Schrodinger equation (NLS) on a star
graph G. At the vertex an interaction occurs described by a boundary condi-
tion of delta type with strength @ € R. We investigate the orbital instability
of the standing waves e'“!®(x) of the NLS-§ equation with attractive power
nonlinearity on G when the profile ®(z) has mixed structure (i.e. has bumps
and tails). In our approach we essentially use the extension theory of symmet-
ric operators by Krein - von Neumann, and the analytic perturbations theory,
avoiding the variational techniques standard in the stability study. We also
prove the orbital stability of the unique standing wave solution to the NLS-§
equation with repulsive nonlinearity.

1. Introduction. Let G be a star graph, i.e. N half-lines joined at the vertex
v =0. On G we consider the following nonlinear Schrédinger equation

i0;U(t, ) + 0*U(t,z) + p|U(t, z)|P~ 1 U(t,z) = 0, (1)
where U(t,z) = (u;(t,x))}Z, : Rx Ry = CN, p=+1, p > 1, and nonlinearity
acts componentwise, i.e. (JUP1U); = |u; [P~ u;.

Practically, equation (1) means that on each edge of the graph, i.e. on each
half-line, we have

10y (t, x) + O2uj(t, ) + pluj(t,z) [P~ uj(t,z) =0, >0, j € {1,...,N}.

A complete description of this model requires smoothness conditions along the
edges and some junction conditions at the vertex v = 0. The family of self-adjoint
conditions naturally arising at the vertex v = 0 of the star graph G has the following
description

(U-1)U(t,0)+4(U + HU'(t,0) =0, (2)
where U(t,0) = (u;(t,0))L,, U'(£,0) = (u(t,0))}L,, U is an arbitrary unitary

N x N matrix, and [ is the N x N identity matrix. Conditions (2) at v = 0
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define the N2-parametric family of self-adjoint extensions of the closable symmetric
operator [9, Chapter 17|

N2 N
H, = GB q2’ dom(H,) = @C((J)O(R+)~
j=1 j=1

In this paper we consider the matrix U which corresponds to so-called -interac-
tion at vertex v = 0. More precisely, the matrix

_ 2

 N+ia
where 7 is the N x N matrix whose all entries equal 1, induces the following nonlinear
Schrodinger equation with d-interaction (NLS-J) on the star graph G

i0,U — H3U + p|UP~'U =0, (3)

where HY is the self-adjoint operator on L?(G) defined for V = (vj)j-vzl by

-1

,  aeR\{0},

(H§V)(z) = (—U;’(l‘));\;l , >0,

N (4)
Do = dom(Hg) = ¢ V € H*(G) : v1(0) = ... = vy (0), > _v}(0) = avy(0)

Condition at ¥ = 0 can be considered as an analog of §-interaction condition for the
Schrodinger operator on the line (see [4]), which justifies the name of the equation.
The case o < 0 refers to the presence of the potential well at the vertex, and o > 0
means the presence of a potential barrier. When a = 0, one arrives at the known
Kirchhoff condition which corresponds to the free flow.

It is worth noting that the quantum graphs (metric graphs equipped with a
linear Hamiltonian H) have been a very developed subject in the last couple of
decades. They give simplified models in mathematics, physics, chemistry, and en-
gineering, when one considers propagation of waves of various type through a quasi
one-dimensional (e.g. meso- or nanoscale) system that looks like a thing neighbor-
hood of a graph (see [8, 13, 22, 25, 29] for details and references). In particular,
a metric graph appears as the natural limit of thing tubular structure, when the
radius of a tubular structure tends to zero [29].

The nonlinear PDEs on graphs have been studied in the last ten years in the
context of existence, stability, and propagation of solitary waves. For instance,
in [27] the author provides an overview of some recent results and open problems
for NLS on graphs. The analysis of the behavior of NLS equation on networks
is currently growing subject due to its relative analytical simplicity (the metric
graph is essentially one-dimensional) and various physical applications involving
wave propagation in graph-like structures (see the references in [10, 17, 27]). In
particular, two main fields where NLS appears as a preferred model are nonlinear
optics and Bose-Einstein condensates.

The main purpose of this work is the investigation of the stability properties of
the standing wave solutions

U(t,z) = ™' ®(x) = (ei‘”tgoj(x));v:l,

to NLS-J equation (3). In a series of papers Adami, Cacciapuoti, Finco, and Noja
(see [1] and references therein) investigated variational and stability properties of
standing wave solutions to equation (3) for u = 1 (attractive nonlinearity). In
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[2] it was shown that all possible profiles ®(z) belong to the specific family of
[%] + 1 vector functions (see Theorem 2.6 below) consisting of bumps and tails.
It was proved that there exists a global minimizer of the constrained NLS action for
—Ny/w < a < a* < 0. This minimizer coincides with the N-tails stationary state
symmetric under permutation of edges, which consists of decaying tails (notice also
that this profile minimizes NLS energy under fixed mass constraint for sufficiently
small mass [3]).

Using minimization property, the authors proved the orbital stability of this N-
tails stationary state in the case —N/w < a < a* < 0.

In [1] it was shown that although the constrained minimization problem does
not admit global minimizers for large mass, the N-tails stationary state is still a
local minimizer of the constrained energy which induces the orbital stability for any
—Nyw < a < 0. The orbital stability of N-tails (bumps) profile was studied in
[5] in the framework of the extension theory. In particular, it was proved that N-

2

bumps profile ®§ (for a > 0) is orbitally unstable in £ for 1 < p <3, w > %5, and

3<p<Bw>wy > %22 (see Theorem 1.1 in [5]). Moreover, in [5] we considered
the NLS equation with ¢’-interaction.

In the case a < 0 it was shown in [2] that the NLS action functional grows when
the number of tails in the stationary state increases, i.e. one can call the rest of the
profiles (except N-tails stationary state) excited stationary states (see Subsection
2.2). This is a subject of special interest because there are only few cases where
excited states of NLS equations are explicitly known.

In the present paper we provide sufficient condition for orbital instability of the
excited states of (3). Moreover, we obtain the novel result on the orbital stabil-
ity /instability of the standing waves in the case a > 0.

Theorem 1.1. Let « # 0, p =1, k € {1,..., [%”, and w > ﬁ Let
also the profile ®¢ be defined by (14), and the spaces €, & be defined in notation
section. Then the following assertions hold.

(i) Let o < 0, then
1) for 1 < p <5 the standing wave e*“'®% is orbitally unstable in E;

2) for p > 5 there exists wy, > (Nfi;gy such that the standing wave e™“'®¢

is orbitally unstable in £ as w € ((Nfizk)g,w,j)
(i) Let o > 0, then

1) for 1 < p < 3 the standing wave ei‘”t@gz is orbitally stable in Ex;

2) for 3 < p < 5 there exists W > (N(—lizkﬁ such that the standing wave
et ®e s orbitally unstable in € as w € (ﬁ,wk), and e“'PY is
orbitally stable in & as w € (W, 00);

3) for p >5 the standing wave €' ®¢ is orbitally unstable in E.

Recently similar results were obtained in [17, Theorem 3.2]. In particular, the
author proved the spectral instability of ®¢ in the cases o < 0, £ > 1 and a >
0, £ > 0. His method essentially uses the generalization of the Sturm theory for the
Schrodinger operators on the star graph.

As it was noted above the Kirchhoff condition on G corresponds to v = 0 in (4).
In [2, Theorem 5] it was shown that for N even there exists one-parametric family
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of soliton profiles given by ®,(z) = (¢a,;(x))Y_;, where

j:la

[ eole—a),  j=1,.,N/2
(pa’j(z){ oz + a), j=N/2+1,..,N, a €R,
while for N odd the unique profile is given by ®¢(x) = (@o(z))N.;, with @o(x)
defined by (21). In particular, ®¢(x) is the standing wave solution for any N > 2.
In [18] the authors considered the spectral instability of the family ®,(x) in more
general setting (for the generalized Kirchhoff condition), while in [19] they studied
orbital instability of ®¢(x). Namely, the authors proved in [19, Theorem 2.6] that for
2 < p < 5 the standing wave e™!®(x) is orbitally unstable in £. We complement

this result by the following theorem.

Theorem 1.2. Let w > 0, then

(i) for 1 < p <5 the standing wave ™' ®q(x) is orbitally stable in Eoq;
(i1) for p > 5 the standing wave e*“'®y(x) is orbitally unstable in E.

The instability part was announced in [19, Remark 2.8] without proof.

In Section 4 we consider model (3) with u = —1 (repulsive nonlinearity). We
prove the following new result on the orbital stability of the unique (N-tails) sta-
tionary state @, = (pq )L, where

1

alz) = {(p—;l)wcschQ (Wx +coth™! (J\f‘%))} T eso0, ()

with < 0 and 0 < w < %—22 More exactly, we prove

Theorem 1.3. Let a < 0, 0 < w < %, and &, be defined by (5). Then the
standing wave e™“'®,, is orbitally stable in E.

Our approach contains new original technique. It does not use variational anal-
ysis, and it is based on the extension theory of symmetric operators, the analytic
perturbations theory, Grillakis-Shatah-Strauss and Ohta approach (see [14, 15, 28]).

Notation. Let A be a densely defined symmetric operator in a Hilbert space H.
The domain of A is denoted by dom(A). The deficiency subspaces and the deficiency
numbers of A are denoted by Ni(A) := ker(A* FiI) and ny(A) := dimNL(A)
respectively. The number of negative eigenvalues counting multiplicities is denoted
by n(A) (the Morse index). The spectrum and the resolvent set of A are denoted
by o(A) and p(A).

We denote by G the star graph constituted by IV half-lines attached to a common
vertex v = 0. On the graph we define

N

N N
@G =PLr®ry),p>1, H(G) =EPH R, HG) =EH*R,).
j=1 j=1

Jj=1

For instance, the norm in LP(G) is defined by

N
\|V||1£p(g) = Z ||Uj|‘1£p(R+)a V= (Uj)j‘vzl-
j=1

By || - ||, we denote the norm in LP(G), and (-,-)2 denotes the scalar product in
2

L#(G).
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We also denote by € and L% (G) the spaces

E={V-= (vj)j-v:l € HY(G) : v1(0) = ... = un(0)},
2 [ V=(0)N, € L*G):vi(x) = ... = vp(x),
Li(9) = { vg1(z) = ... = on(z), >0 ' }’

and & = £ N L2(G). We also use the following notation
L2,(G) ={V = (v;)}L, € L*(G) : v1(2) = ... = vn(x), x > 0},
and Eq = ENLZ,(G).

2. Preliminaries.

2.1. Well-posedness. The well posedness is the crucial assumption in the stability
theory. In [2] the problem of well-posedness of the NLS-§ has been studied in the
case ;1 = 1. Recently we have completed and extended mentioned result (see [5]).
Below we recall these results, as well as generalize them on the case p = —1.

In [5] (see Lemmas 3.1 and 3.3, and the proof of Theorem 3.4) we prove the
following three technical lemmas.

Lemma 2.1. Let {(fﬁHg tier be the family of unitary operators associated to NLS-
§ model (3). Then for every V = (v;)N; € € we have
az(e—itH‘g‘V) — _e—itH(;”V/ + B(VI),
vi(z), © >0,

where B(V') = (26“3317]')?]:1, with v;(z) = 0 w0 and €% s the

unitary group associated with the free Schrodinger operator on R.

The proof is based on the following representation of the group e *Hs for av > 0
(for the case a < 0 see [5, Remark 3.2])

o0
eIV (2) = £ / e_itTQTRi-,—V(l‘)dT, (6)
where R,V = (H§ + 2%21)~'V has the components
1 oo
(RV);0) =i 4 o [ osye =y, ™
0

The coefficients ¢; are determined by the system

tl(z) — tg(z)

1 -1 0 0 C1
0 1 -1 0
1
: : : : R ¢ ’
0 0 I | N-1(2) — v (2)
¥tz §tz gtz o Ftz en (%—z)zltj(z)
j=
. )
where ¢;(2) = 1 [v;j(y)e"*¥dy. Another two lemmas follow from the formulas
0
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Lemma 2.2. The family of unitary operators {67”HfS¥ ticr preserves the space &,
i.e. for Uy € & we have e "5 U, € €.

Lemma 2.3. The family of unitary operators {e’“H? tier preserves the space E,
i.e. for Uy € &, we have e ""H5 U, € &,.

Using essentially the above lemmas we prove the following extended well-posed-
ness result.

Theorem 2.4. Let p > 1, up = £1. For any Uy € &, there exists T > 0 such that
equation (3) has a unique solution U(t) € C([-T,T],E)NCH([-T,T),E’) satisfying
U(0) = Ugy. Moreover, the mapping

Uy —>UeC(-T,7,€&)

is at least of class C? for p > 2. In particular, if Uy € &, then U(t) € &y
Furthermore, the conservation of energy and mass holds, that is,

E(U(t)) = E(Uo), M(U(t)) =013 = [|Uoll3,
where the energy E is defined by

1 a
E(U) = 3[U|5 = A5I[U11550 + §lw ()], U = (uy)}, €& 9)
Proof. The proof of theorem repeats the one of [5, Theorem 3.4]. We present it
to give a self-contained exposition of the subject. The local well-posedness re-
sult in & follows from standard arguments of the Banach fixed point theorem ap-

plied to non-linear Schrédinger equations (see [11]). Consider the mapping Jy, :
C([_T7 T]7 8) — C([_Ta T]7 5) given by

t
Ju,[U(t) = e~ Uqg + pi / e IR U ()P~ U (s)ds, (10)
0

where e~H5 represents the unitary group associated to model (3). One needs to
show that the map Jy, is well-defined. We start by estimating the nonlinear term
|U(s)[P~tU(s). Using the one-dimensional Gagliardo-Nirenberg inequality one can
show (see formula (2.3) in [2])

[Ollg < O[T 2 |[U]3 %5, g>2,C>0. (1)

Using (11), the relation |[(|f|P~1f)| < Co|f|P~1|f’| and Hélder’s inequality, we
obtain for U € H(G)

Ul @) < CallUIEy 0 (12)

Let Up, U € &, then from (10), inequality (12), L?-unitarity of e~**5 and eitos
we obtain the estimate

||, (U] (g) < C2l[Uollmr(g) + C5T sup U516y
s€|0,

where the positive constants Cs, C3 do not depend on Uy. Moreover, from Lemma
2.2 we get Jy, [U](¢) € € for all ¢.

The continuity and the contraction property of Jy,[U](t) are proved in a stan-
dard way. Therefore, we obtain the existence of a unique solution for the Cauchy
problem associated to (3) on .

Next, we recall that the argument based on the contraction mapping principle
above has the advantage that if the non linearity F(U,U) = |U|P~!U has a specific
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regularity, then it is inherited by the mapping data-solution. In particular, following
the ideas in the proof of [24, Corollary 5.6], we consider for (Vo, V) € B(Uy;€) x
C([-T,T),€) the mapping

I'(Vo,V)(t) = V(1) = Jv [VI(),  te[-T,T]

Then I'(Uyg, U)(t) = 0 for all t € [T, T)]. For p—1 being an even integer, F(U, U) is
smooth, and therefore I' is smooth. Hence, using the arguments applied for obtain-
ing the local well-posedness in £ above, we can show that the operator Oy I'(Ug, U)
is one-to-one and onto. Thus, by the Implicit Function Theorem there exists a
smooth mapping A : B(Uy;d) — C([—T,T], &) such that I'(Vy, A(Vy)) = 0 for all
Vo € B(Up;6). This argument establishes the smoothness property of the mapping
data-solution associated to equation (3) when p — 1 is an even integer.

If p—1 is not an even integer and p > 2, then F(U, U) is CP-function, and conse-
quently the mapping data-solution is of class CP! (see [24, Remark 5.7]). Therefore,
for p > 2 we conclude that the mapping data-solution is at least of class C?.

Finally, from the uniqueness of the solution to the Cauchy problem for (3) in &£
and Lemma 2.3 we get that for Uy € & the solution U(t) to the Cauchy problem
belongs to & for any t.

The proof of conservation laws repeats the one in [11] (see Theorem 3.3.1, 3.3.5
and 3.3.9). O

Lemma 2.5. The local solution of the Cauchy problem for equation (3) is extended
globally for p € (1,5) in the case p = 1, and for p > 1 in the case p = —1 (i.e.
T =+00).

Proof. The case p = 1 was considered in [2, Corollary 2.1]. For yx = —1 the trivial
inequality

L[U'[B + 2w (0)2 = E(U) + £ |[U[2H < B(U)

induces the global existence for any p > 1. O

2.2. Existence of standing waves. Let us discuss briefly the existence of the
standing wave solutions U(t, z) = e™“'®(z) to (3). It is easily seen that the ampli-
tude ® € D,, satisfies the following stationary equation
H{® +w® — p|®P'® = 0. (13)

In [2] the authors obtained the following description of all solutions to equation
(13) in the case p = 1.
Theorem 2.6. Let [s] denote the integer part of s € R, a # 0 and p = 1. Then
equation (13) has [%] +1 (up to permutations of the edges of G) vector solutions
P = ((p%yj)é\’:l, k=0,..., [%], which are given by

e cea? (020 0|77 =1

[%sech2 (Mﬂc+ak)}ﬁ7 Jj=k+1,..,N, (14)

«

()é2
W), and W>m

Remark 1. (i) Note that in the case o < 0 vector ®¢ = (apg’j)évzl has k bumps
and N — k tails. It is easily seen that ®§ is the N-tails profile. Moreover,
the N-tails profile is the only symmetric (i.e. invariant under permutations of

where aj, = tanh™* (
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the edges) solution of equation (13). In the case N = 5 we have three types
of profiles: 5-tails profile, 4-tails/1-bump profile and 3-tails/2-bumps profile.
They are demonstrated on Figure 1 (from the left to the right).

(77) In the case a > 0 vector ®¢ = ((p%yj)évzl has k tails and N — k bumps
respectively. For N = 5 we have: 5-bumps profile, 4-bumps/1-tail profile, 3-
bumps/ 2-tails profile. They are demonstrated on Figure 2 (from the left to
the right).

Figure 1

Figure 2

In [2] it was shown that for any p > 1 there is a* < 0 such that for —N/w <
o < o the N-tails profile ®§ minimizes the action functional

S(V) = 5lIVIE+ $IIVIE - s lIVIEG + §010), V=(y)L €€ (15)

on the Nehari manifold
N ={V e &\ {0} : [[V'[|3 +w[|V]I3 = [IVIET] + avf(0) = 0}

Namely, the N-tails profile ®§ is the ground state for the action S on the manifold
N. In [1] the authors showed that ®§ is a local minimizer of the energy functional
E defined by (9) among functions with equal mass.

Note that @ € N for any k. In [2] it was proved that for k£ # 0 and o < 0 we
have S(®§) < S(®f) < S(®,,). This fact justifies the name excited states for
the stationary states ®¢, k # 0. It is worth noting that the profiles ®¢, k # 0, are
excited in the sense of minimization of the energy functional. In particular, in [1]
it was shown that E(®(wy)) < E(®q,(wry1)), where wy, and wy41 are such that
|| @5 (wi)ll2 = ||} (Wrt1)||2 = m, ie. for a fixed mass constraint. Here @7 (w)
stands for ®¢ (formally ®¢ is a function of w).

For o > 0 nothing is known about variational properties of the profiles ®¢. In
particular, one can easily verify that S(®§) > S(®¢) > S(®y,,), k #0.

3. The orbital stability of standing waves of the NLS-/ equation with
attractive nonlinearity. Crucial role in the stability analysis is played by the
symmetries of NLS equation (3). The basic symmetry associated to the mentioned
equation is phase-invariance (in particular, translation invariance does not hold due
to the defect at v = 0). Thus, it is reasonable to define orbital stability as follows.
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Definition 3.1. The standing wave U(t,z) = ¢*“!®(z) is said to be orbitally stable
in a Hilbert space H if for any € > 0 there exists 7 > 0 with the following property:
if Uy € H satisfies ||[Ug — ®||y < 7, then the solution U(t) of (3) with U(0) = Uy
exists for any ¢ € R, and

sup mf [U(t) — ?®||3 < e.

teR 0

Otherwise, the standing wave U(t, z) = e™“!®(x) is said to be orbitally unstable in
H.

3.1. Stability framework. To formulate the stability theorem for NLS-§ equation
(3) we will establish some basic objects. Let @7 be defined by (14). In what follows
we will use the notation ®; := ®¢. We start verifying that the profile ® is a
critical point of the action functional S defined by (15). Indeed, for U,V € &,

d
S (U)V = %S(U +tV)|i=0

= Re ((U’, V')y +w(U, V) — (JUP~IU, V), + aul(O)vl(O)).

Since @, satisfies (13), we get S’(®) = 0.

In the approach by [14, 15, 28] crucial role is played by spectral properties of
the linear operator associated with the second derivative of S calculated at Py
(linearization of (3)). Thus, splitting U,V € £ into real and imaginary parts
U = U! +iU? and V = V! + V2 with the vector functions U/, VI, j € {1,2},
being real valued, we get

S"(®4)(U, V)
= [(UYY, (V1)) + (UL, V1), = (p(@3)P 101, VY)s + aud ()0} (0)]
+ (U2, (V3)) + w(U2, V2)2 = (@) 0% V), + aud (0003 (0)].
Then it is easily seen that S”(®;)(U, V) can be formally rewritten as
S"(®1)(U, V) = B, (U, V') + B, (U V?). (16)
Here bilinear forms BY; and Bg, are defined for F = ()1, G =(g5)}L, € E by

Z / Figs + wfig; — plows) M frg5)de + afi (091 (0),

j=1 0

N
BL(F,G)=> [(

(17)

i wfigr — (er)P fig)de 4+ afi(0)g1(0),

0\8

<.

where ¢, ; = ¢ ;. Next, we determine the self-adjoint operators associated with
the forms Bf', in order to establish a self-contained analysis.

First note that the forms B, j € {1,2}, are bilinear bounded from below and
closed. Thus, there appear self-adjoint operators L', and Ly, associated (uniquely)
with B, and Bg, by the First Representation Theorem (see [21, Chapter VI,
Section 2.1]), namely,

Lo, V=W, je{l2},

dom(Le,) = {v € € : IW € L2(G) s.1.VZ € £, BY(V,Z) = (W,Z),}. &)
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In the following theorem we describe the operators L ; and L3, in more explicit
form.

Theorem 3.2. The operators L and L & defined by (18) are given on the domain
D, by

2

e = ( (= gz +o - plona?)b1s).
LY, = (( — j—z +w— (wk,j)p_1)5i,j> ,

where §; ; is the Kronecker symbol.

Proof. Since the proof for Lg, is similar to the one for L, we deal with L. Let
Bf‘k = B® + By, where B*: £ x & -+ Rand By : € xE%Raredeﬁnedby

N o0
B*(U,V) = Z/u;v;dm + au1(0)v1(0),
0

j=1

Jj=1

N (o)
By ,x(U,V) Z/ w — p(pr. )P~ Hujvdz.
0

We denote by L* (resp. Li ) the self-adjoint operator on L?(G) associated (by the
First Representation Theorem) with B* (resp. Bi ). Thus,

LoV = W,
dom(L®) = {V € £ : IW € L%(G) s.t.VZ € £, B(V,Z) = (W, Z),}.

The operator L is the self-adjoint extension of the following symmetric operator

LV = (=) (z))¥

J Jj=1

dom(L%) = { V € H*(G) : v1(0) = ... = vx(0) = 0, > v}(0) =0

Indeed, initially we have L® C L% Let V € dom(L°%) and W = (—v}(z))}, €
L?(G). Then for every Z € £ we get B*(V,Z) = (W,Z)y. Thus, V € dom(L®)
and L*V = W = (—vf(2))}_,, which yields the claim.

Arguing as in the proof of Theorem 3.5(iii), we can show that the deficiency
indices of L? are given by ny(L°) = 1. Therefore, there exists one-parametric
family of self-adjoint extensions of LO. Similarly to [4, Theorem 3.1.1], we can
prove that all self-adjoint extensions of L? are given by

LAV = (2 ()}

dom(L”) = ¢V € H*(G) : v1(0) = ... = un(0), Y _vj(0) = pvi(0), BER

To show this we assume that L acts on complex-valued functions. Then due to [4,
Theorem A.l], any self-adjoint extension L of L% is defined by

dom ={F=F¢+cF; + ce®F_;: Fy € dom(L%),c€C,0 e [0,2m)},
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N

where Fy; = (ﬁeimw) L (v/Ei) > 0. It is easily seen that for F € dom(i)
j=
we have
N
(F);(0) = =Ne(1+ ), (F);(0) = ¢ (/4 4 e 0=n/4))
j=1

From the last equalities it follows that

-N(1+ ew)
(eiﬂ'/4 + ei(e—ﬂ'/4))

> (F)}(0) = B(F),(0), where 8=

Jj=1

€R,

which induces that dom(i) C dom(L?). Using the fact that L” defined on dom(L?)
is self-adjoint, we arrive at dom(L) = dom(L”) for some 3 € R.
Finally, we need to prove that § = a. Take V € dom(L®) with V(0) # 0,

N oo
then we obtain (L*V,V) = 7 [(v})?dz 4+ B(v1(0))?, which should be equal to
J=10

N oo
B*(V,V) =3 [(v})?dx 4 a(v:(0))? for all V € . Therefore, 8 = a.
j=10

Note that L, j is the self-adjoint extension of the following multiplication oper-

ator
N

LoV = ((@=plpr,)"os(@) . dom(Los) = €.

j=1
Indeed, for V € dom(Lg ) we define W = ((w - p(@k,j)p_l)vj(a:));il € L*(G).
Then for every Z € € we get By x(V,Z) = (W,Z),. Thus, V € dom(L; ) and
L,V =W = ((w —p(gok’j)p_l)vj(x));il. Hence, Loy C Ly . Since Loy is
self-adjoint, Ly = Lo ;. The Theorem is proved. O

It is easily seen from (16) that formally S”(®¢) can be considered as a self-adjoint
2N x 2N matrix operator (see [14, 15] for the details)

o, L?,k: 0
ko 0 Lg,k )

Remark 2. The above theorem is the generalization of [23, Lemma 10] (for G = R).

Define
[ 1 if0,]|®k]3 > 0 at w = wo,
plwo) = { 0 if 9,||®k|2 < 0 at w = wp.
Having established Assumptions 1, 2 in [14], i.e. well-posedness of the associated
Cauchy problem (see Theorem 2.4) and the existence of O in w standing wave, the

next stability /instability result follows from [14, Theorem 3] and [28, Corollary 3
and 4].

(19)

Theorem 3.3. Let a # 0, k € {1,..., [%]}, w > ﬁ, and n(HY) be the
number of negative eigenvalues of Hf. Suppose also that

1) ker(Lg,) = span{®;};

2) ker(L,,) = {0};

3) the negative spectrum of L$ . and L, consists of a finite number of negative
eigenvalues (counting multiplicities);
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4) the rest of the spectrum of L{, and Ly, is positive and bounded away from
zero. Then the following assertions hold.
(i) If n(HY) = pw) = 1 in Li(G), then the standing wave e™'®y, is orbitally
stable in &;,.
(i) If n(HY) — p(w) = 1 in L3(G), then the standing wave e™'®y is orbitally
unstable in &, and therefore in E.

Remark 3. The instability part of the above Theorem is a very delicate point
worth to be commented.

(¢) It is known from [15] that when n(H$) — p(w) is odd, we obtain only spectral

instability of e*!®;,.. To obtain orbital instability due to [15, Theorem 6.1], it

is sufficient to show estimate (6.2) in [15] for the semigroup e!A«* generated

by
_ 0 L3,
Aok = < -L{, O ) .

In our particular case it is not clear how to prove estimate (6.2).

(i) In the case n(HY) = 2 (which happens in L?(G) for o < 0) we can apply the
results by Ohta [28, Corollary 3 and 4] to get the instability part of the above
Theorem. We note that in this case the orbital instability follows without
using spectral instability.

(#4i) Generally, to imply the orbital instability from the spectral one, the approach
by [16] can be used (see Theorem 2). The key point of this method is the use
of the fact that the mapping data-solution associated to the NLS-6 model is
of class C? as p > 2 (see Theorem 2.4). For applications of the approach by
[16] to the models of KdV-type see [6] and [7].

3.2. Spectral properties of LT, and L3 . Below we describe the spectra of
the operators L{ ; and Lg ; which will help us to verify the conditions of Theorem
3.3. Our ideas are based on the extension theory of symmetric operators and the
perturbation theory.

The main result of this subsection is the following.

Theorem 3.4. Leta # 0, k € {1, e [%]} andw > (Nf%)? Then the following
assertions hold.

(i) If « <0, then n(HY) =2 in L(G), i.e. n(Hg| 12 (g)) = 2.

(i) If a > 0, then n(HY) =1 in L(G), i.e. n(Hg| 2 g)) = 1.

Theorem 3.4 is an immediate consequence of Propositions 1 and 4 below.

Proposition 1. Let a #0, k € {1, ey [%H and w > ﬁ Then the follow-
ing assertions hold.
(i) ker(Lg,) = span{®;} and Lg, > 0.
(ii) ker(Lf ;) = {0}.
(iii) The positive part of the spectrum of the operators L{, and LY, s bounded
away from zero.

Proof. (i) It is obvious that ®; € ker(L3 ;). To show the equality ker(Lg,) =
span{®;} let us note that any V = (v;)}_, € H?(G) satisfies the following identity

-1 d d V;
" p—1 2 J
! twv; — P = —— |2 — )|, x>0.
vj Y k.j vi Pk, j dx |: kg dx (‘pk,j)] *
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Thus, for V € D, we obtain

o= S [ [ ()] o35 [ v 252

SOkJ
Jl()

5 Jonr 4 ()] e ftom -s02]

J=1 0

Using boundary conditions (4), we get
N

' (0
> [0 0)- “?<0>§Z’jgo§]
N
= av?(0) + vwov?(0 Ztanh —ag) Z tanh(ay)
j=k+1
— av?(0) + Va3 (0)(N — 2k) =————— = 0,

(2k — N)yw
which induces (L, V,V)s > 0 for V € D, \ span{®;}. Therefore, ker(Ly ) =
span{®;}.
(#1) Concerning the kernel of L{;, the only L*(R)-solution of the equation
—vj +wuj — pgpi_jlvj =0

is v; = ‘Pk] up to a factor. Thus, any element of ker(L ) has the form V =

(vj)jvzl = (cjcka)J:l, ¢; € R. Continuity condition vl(O) = ... = vy(0) induces
that Cl1 = ... =CN, ie.
p .
) _ 790]@’]‘7 J= 17aka
”J(x)_c{ Gy G=k+1.,N 0 CER

N
Condition ‘21 v5(0) = av;(0) is equivalent to the equality
=

( (1 p) + 5= (N(X;k)z) :O.

The last one induces that either w = uv‘—lw
therefore V = 0.

(#4i) By Weyl’s theorem (see [30, Theorem XIII.14]) the essential spectrum of L',
and Lg; coincides with [w,00). Since @ € L*(G) and ®i(z) — 0 as x — +o0,
there can be only finitely many isolated eigenvalues in (—oo,w’) for any w’ < w.
Then (i) follows easily. O

(which is impossible) or ¢ = 0, and

Below using the perturbation theory we will study n(L$ ;) in the space L3(G)
for any k € {1, ..., [%] }. For this purpose let us define the following self-adjoint
matrix Schrédinger operator on L?(G) with the Kirchhoff condition at v = 0

2

L} = (( ddz +w — pyp 1>5i,j>7

N (20)
dom(LY) = ¢ V € H*(G) : v1(0) = ... = vy (0), > _vj(0) =

<.
I
—
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where ¢q represents the half-soliton solution for the classical NLS model,

oole) = [ B30 e (L= D2, ) T o)

From definition of the profiles ®¢ in (14) it follows
®) - Py, as a— 0, in HY(G),

where ®¢ = (apo)évzl. As we intend to study negative spectrum of L{,, we first
need to describe spectral properties of LY (which is “limit value” of L¢, asa—0).

Theorem 3.5. Let L be defined by (20) and k € {1, ..., [252]}. Then the asser-
tions below hold.

(1) ker(LY) = Span{‘i’o,h e ‘i)O,Nfl}: where
B ;= (0,...,0, 00, —h,0,...,0).
joj+1
(i) In the space L3(G) we have ker(LY) = Span{fio’k}, ie. ker(L?‘Li(g)) _
span{®g 1}, where

‘io,k = (Nk_kgog,...,1\[};]“(,06,—(,06,...,—906) . (22)
1 Kk k+1 N
i) The operator LY has one simple negative eigenvalue in L*(G), i.e. n(LY) = 1.
1 1

Moreover, LY has one simple negative eigenvalue in Lz(g) for any k, i.e.
n(L9|L2g)) = 1.

iv) The positive part of the spectrum of LY is bounded away from zero.

1

Proof. The proof repeats the one of Theorem 3.12 in [5].
(i) The only L?(R, )-solution to the equation

1

v +wu; —ppy vy =0

is v; = ¢} (up to a factor). Thus, any element of ker(LY) has the form V =

(vj)j.vzl = (cjgof));-vzl, ¢;j € R. It is easily seen that continuity condition is satisfied

N
since ¢5(0) = 0. Condition _ v;(0) = 0 gives rise to (N — 1)-dimensional kernel of
j=1
LY. It is obvious that functions <i>07j, j=1,...,N — 1 form basis there.

(ii) Arguing as in the previous item, we can see that ker(LY) is one-dimensional
in LZ(G), and it is spanned on @ .

(77) In what follows we will use the notation Iy = (( — % +w —pgog_l)éi’j).

First, note that LY is the self-adjoint extension of the following symmetric operator
N
L) =1k, dom(L))={VeHG):v(0)=..=uvy(0)=0Y vj0)=0
j=1

Below we show that the operator L is non-negative and has deficiency indices
n+ (L) = 1. First, let us show that the adjoint operator of L] is given by

(L) =y, dom((L)*) ={V € H*G):v:1(0)=..=vn(0)}. (23)
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Using standard arguments one can prove that dom((L$)*) C H2(G) and (L§)* =
(see [26, Chapter V,§17]). Denoting
D = {V € H*(G) :v1(0) = ... = ’UN(O)} ,
we easily get the inclusion D§ C dom((L$)*). Indeed, for any U = (uj)é-vzl € D
and V = (v;)}., € dom(L§) we get for U* = ly(U) € L*(G)
N
LYV, U)z = (b(V), U)a = (V. o(U)2 + Y _ [~vju; + vjuf]

j=1
= (Vv lO(U))Q = (VvU*)Qa
which, by definition of the adjoint operator, means that U € dom((LJ)*) or D§ C
dom((LJ)*).
Let us show the inverse inclusion D§ O dom((L§)*). Take U € dom((L3)*), then
for any V € dom(LJ) we have

N
LYV, U)2 = ((V), U)2 = (V. (U))a + Y [~vfuy + vyer ]

= (V,(L5)*U)2 = (V, b(U))2.
Thus, we arrive at the equality
N N
> [=vhuy +vuf] o = v(0)u;(0) =0 (24)
j=1 j=1
for any V € dom(Lg). Let W = (w;)}_; € dom(LJ) be such that w5(0) = w}(0) =
... = wi(0) = 0. Then for U € dom((L§)*) from (24) it follows that

N
> w;(0)u;(0) = wi (0)us(0) +w)(0)us(0) = 0. (25)
j=1
N
Recalling that _ w}(0) = w}(0) + w3(0) = 0 and assuming w5(0) # 0, we obtain
j=1
from (25) the equality u1(0) = u2(0). Repeating the similar arguments for W =
(w;)}, € dom(LJ) such that w}(0) = wg(0) = ... = wiy(0) = 0, we get uy(0) =
u3(0) = ug(0) and so on. Finally taking W = (w;)}_; € dom(Lg) such that
wi(0) = 0 we will arrive at u1(0) = u2(0) = ... = uy—_1(0) and consequently
u1(0) = uz(0) = ... = un(0). Thus, U € D¢ or D D dom((L3)*), and (23) holds.

Let us show that the operator LY is non-negative. First, note that every compo-
nent of the vector V = (vj)évzl € H?(G) satisfies the following identity

—1 -1d 2 d Vi
,1);’ +w1)j 7])%08 v = ?6% (@6) % (pij/o , T > 0.

Using the above equality and integrating by parts, we get for V € dom(LJ)

N % d /v 2 N A 00
wvovie =3 [ier |4 (2)] ar+ 30 [+ 2]
; 0 =1 Yolo
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where the non-integral term becomes zero by the boundary conditions for V and
the fact that = 0 is the first-order zero for ¢y (i.e. ¢f(0) # 0). Indeed,

N N
5 -+ 22%] = &L @) + el @)
j=1 7 ’ QDE) 0 j=1 =0+ QDg(l’)

Due to the von Neumann decomposition given in Proposition 6, we obtain

dom((Lg)*) = dom(LJ) @ span{V;} & span{V_;},
=\ N
where Vy,; = (e’\/E“’) , S(v/%1) > 0. Indeed, since ¢y € L (R,), we get
j=1
dom((LJ)*) = dom(L*) = dom(L*) @ span{V;} @ span{V _;},
where

L= (( - CZ;)(SU) , dom(L) = dom(Lj)), Ni(L)=span{Vi;}.

Since n4 (L) = 1, by [26, Chapter IV, Theorem 6], it follows that ny(LY) = 1.
Next, due to Proposition 7, n(LY) < 1. Taking into account that (L{®g, ®)s =
—(p— 1)||‘I’0HZE < 0, where ®¢ = (0)}L,, we arrive at n(L{) = 1. Finally, since
®, € L2(G) for any k, we have n(L(1)|Li(g)) =1.

(iv) follows from Weyl’s theorem. O

Remark 4. Observe that, when we deal with the deficiency indices, the operator
L] is assumed to act on complex-valued functions which however does not affect
the analysis of the negative spectrum of L{ acting on real-valued functions.

The following lemma states the analyticity of the family of operators L{ .

Lemma 3.6. As a function of «, (L?’k) is real-analytic family of self-adjoint op-
erators of type (B) in the sense of Kato.

Proof. By Theorem 3.2 and [21, Theorem VII-4.2], it suffices to prove that the fam-
ily of bilinear forms (Bf) defined in (17) is real-analytic of type (B). Indeed, it is
immediate that Bf'; is bounded from below and closed. Moreover, the decomposi-
tion of BY'; into B* and By, implies that a — (B{, V, V) is analytic. O

Combining Lemma 3.6 and Theorem 3.5, in the framework of the perturbation
theory we obtain the following proposition.

Proposition 2. Let k € {1, e [%} } Then there exist ag > 0 and two analytic
functions A : (—ag, ap) = R and Fy, : (—ao, a0) = L2(G) such that

(i) Ax(0) =0 and Fy(0) = ‘i’o,k, where <fIV>0’k is defined by (22);
(i) for all o € (—aw, ), Ak(e) is the simple isolated second eigenvalue of L'
in L2(G), and Fi(«) is the associated eigenvector for Ai(c);
(#91) oo can be chosen small enough to ensure that for o € (—ag, ) the spectrum
of LYy, in L}(G) is positive, except at most the first two eigenvalues.

Proof. Using the structure of the spectrum of the operator L} given in Theorem
3.5(i1) — (iv), we can separate the spectrum o(L{) in LZ(G) into two parts o9 =
{A),0}, \Y < 0, and oy by a closed curve I' (for example, a circle), such that
oo belongs to the inner domain of I" and o7 to the outer domain of I' (note that
o1 C (e,400) for € > 0). Next, Lemma 3.6 and the analytic perturbations theory
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imply that I' C p(L¢ ) for sufficiently small |af, and o(L{' ;) is likewise separated by
I" into two parts, such that the part of U(L‘ik) inside I consists of a finite number
of eigenvalues with total multiplicity (algebraic) two. Therefore, we obtain from
the Kato-Rellich Theorem (see [30, Theorem XII.8]) the existence of two analytic
functions Ay, Fy defined in a neighborhood of zero such that items (i), (i) and (i)
hold. O

Below we investigate how the perturbed second eigenvalue moves depending on
the sign of a.

Proposition 3. There exists 0 < a; < ag such that \g(a) < 0 for any a €
(—a1,0), and Mg(a) > 0 for any a € (0,a1). Thus, in Li(G) for a small, we have
n(L{,) =2 asa <0, and n(L{;) =1 as a > 0.

Proof. From Taylor’s theorem we have the following expansions
Ae(@) = Aopa+0(a?) and Fi(a) = Bgy +aFoi +0(a?),  (26)

where Ao = N, (0) € R and Fo ; = 0,Fk()|a=0 € LZ(G). The desired result will
follow if we show that Ao > 0. We compute (L{; Fy(a), ®o )2 in two different

ways.
Note that for ®;, = ®¢ defined by (14) we have

@k(a) = (I)o + OLGO,k + 0(042),

2 / / / / (27)
GO,k' = 8a‘1’k(04)|a=0 = G- (N—2k)w P05 -+ Pos —Pos s —Po | -
1 k kt1 N
From (26) we obtain
(LS, Fi(@), ®or)2 = doa] [ ®o ]2 + O(a?). (28)

By L(ft‘foyk = 0 and (26) we get

L§ ;o = p ((20)"" — (21)7") Bo = —ap(p — 1)(0)" > CoxPox + O(a”).
(29)
The operations in the last equality are componentwise. Equations (29), (27), and
'I’o,k € D, induce

(LS, Fr(a), o)z = (Fi(a), LS, Bok)2
— (Boap(p = 1)(@0) *Gou®on ) +0(a?)

:f@@fnﬁﬁﬁmwa@%pMN%M/ S 2de +0(a®)  (30)
0

——2ap%2t [ (a0l 2o+ O(a?).
Finally, combining (30) and (28), we obtain

—2p8E [ ()Pt " d
Aok = 9 +O(a).
|| @o,xll5
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It follows that Ag j is positive for sufficiently small || (due to the negativity of ¢,
on R} ), which in view of (26) ends the proof. O

Now we can count the number of negative eigenvalues of L, in L%(G) for any
«, using a classical continuation argument based on the Riesz-projection.

Proposition 4. Let k € {1,..., [%]} and w >
assertions hold.

(i) If « > 0, then n(Li‘MLi(g)) =1.

(i) If a <0, then n(L(ll,k|Li(Q)) = 2.

ﬁ. Then the following

Proof. We consider the case a < 0. Recall that ker(L{ ;) = {0} by Proposition 1.
Define ao, by

Qoo = inf{@ < 0 : LT has exactly two negative eigenvalues for all a € (&,0)}.

Proposition 3 implies that a., is well defined and a, € [—00,0). We claim that
Qoo = —00. Suppose that aoe > —oco. Let M = n(L{'}) and I' be a closed curve
(for example, a circle or a rectangle) such that 0 € ' C p(L'i",;’), and all the negative
eigenvalues of L(fjj belong to the inner domain of I". The existence of such I' can
be deduced from the lower semi-boundedness of the quadratic form associated to
Lis.

Next, from Lemma 3.6 it follows that there is € > 0 such that for a € [as —
€, Qoo t€] wehave T' C p(L{ ) and for € T, a — (L§;, —¢) ™" is analytic. Therefore,
the existence of an analytic family of Riesz-projections a — P(«) given by

Pla) =5 [ (L3, e
r
implies that dim(ran P(«)) = dim(ran P(as)) = M for all & € [aee — €, aoo + €.
Next, by definition of ax, Lfl"jjJrE has two negative eigenvalues and M = 2, hence
LT, has two negative eigenvalues for a € (oo — €,0), which contradicts with the

definition of a,. Therefore, ao, = —00. O

Remark 5. (i) The idea of using the continuation argument above was borrowed
from [23, Lemma 12].
(1) We note that by Proposition 8 in Appendix, the Morse index n(L{,) in the
whole space L?(G) satisfies the estimate n(Lf,) < k+1for a < 0, and
n(L{,) < N —Fk for a > 0.

3.3. Slope analysis. In this subsection we evaluate p(w) defined in (19).

Proposition 5. Leta #0, k € {1, e [%] }, and w > ﬁ Let also Ji(w) =
|| @3- Then the following assertions hold.
(i) Let a <0, then
1) for 1 <p <5, we have Ji(w) > 0;
2) for p > b, there exists w; such that Jy(wf) = 0, and Ji(w) > 0 for
wE (ﬁ,w,ﬁ), while Ji(w) < 0 for w € (wf, 00).
(#4) Let o > 0, then
1) for1 < p <3, we have Jx(w) > 0;
2) for 3 < p < 5, there exists Wy such that Jy(wg) = 0, and Ji(w) < 0 for

w e (7(1\,3;)2,@%), while Ji(w) >0 for w € (g, 00);
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3) for p>5, we have Jx(w) < 0.

Proof. Recall that ®¢ = (gog)j)év:l, where ¢f ; is defined by (14). Changing vari-

ables we have

[y
0
0o 4
J sech?=tydy, j=1,...k;
2 2 1 e
<p+ 1)p—1 20}?*1 2 tanh (m)
N oo 4
? Pt J sech?=lydy, j=k+1,..,N
tanh_l<m>
L . _
2 2 1 7f (1—¢t3)r-1 "dt, j=1,..,k;
_ (p+1)p—1 21 2 | G
S\ 2 -1 L 2 _
g [ Q-1 j=k+1,.. N
T-Nve

Therefore, we obtain

_2 2 1 1 )
+1\p-1 2up-1 2 2
2= (P 1—2)p-1
B e e e B
@ NVE
1
2,
+ / (N —k)(1—t*)p=1""qt].
@ NVE

From the last equality we get

7—3p / 3-p / 3-p
Ji(w) :OwQ(P—l)i%’f[ / k(1 —t*)p=1dt + / (N — k)(1 —t*)p—1d4]
—a «
(2k—N)v/w (2k—N)v/w
7-3p ) 3p T—3p _
_CW2(p71)%(1—(JV7aW>p :CUJQ(pil)Jk(UJ),
(31)
2
where C = p—il (pTH) P=1 > 0 and
1 1
~ 3—p 3—p
Jr(w) = =% / k(1 —t*)p=1dt + / (N —k)(1 —t*)r—1dt
@ NVE NV
3—p
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Thus,
—p 2(p—2)

~ —a 3— o? 1 o2 a2 - -1
Jolw) = G ot l(l - m)p + e (1 - (N—Qk)zw) ’ ] - (32)

(i) Let « < 0. It is immediate that Ji(w) > 0 for 1 < p < 5 which yields 1).
Consider the case p > 5. It is easily seen that

w—r00

1
lim_ Je(w) =00, lim Jp(w / (1—1t%) P 1dt < 0.
_*(Nleg)2 0
Moreover, from (32) it follows that jlg(w) < 0 for w > ﬁ and consequently
Ji(w) is strictly decreasing. Therefore, there exists a unique wj; > ﬁ such
that jk(wZ) = Ji(wy) = 0, consequently Jy(w) > 0 for w € (ﬁ,w,ﬁ) and
Je(w) < 0 for w € (wj, 00), and the proof of (i) — 2) is completed.

(74) Let o > 0. It is easily seen that Ji(w) < 0 for p > 5, thus, 3) holds. Let
1 < p < 5. It can be easily verified that

lim Jo(w) = 2 pN/ )p= =y (33)
w—+00
and
5— 1 3-p
lim_ jk(w)z{ T—I{(N*k)ffl(l £2)p=1dt >0, pe(1,3], (34)
w— m —0oQ, pE (3,5)

Let 1 < p < 3, using the fact that J}(w) < 0 we get from (33)-(34) the inequality
Jp(w) > 0, and (27) — 1) holds. Let 3 < p < 5, then J;(w) > 0, therefore, from
(33)-(34) it follows that there exists wy > ﬁ such that Jy (@) = Jp(@r) = 0,
moreover, Ji(w) < 0 for (ﬁ,d)k), and Ji(w) > 0 for (@, 00), i.e. (4) —2) is
proved. O

Proof of Theorem 1.1. (i) Let a < 0. Due to Theorem 3.4, we have n(HY) = 2 in
L3(G). Therefore, by Proposition 5(i) we obtain

n(Hy) —plw) =1
forl<p<Hw> ﬁ, and for p > 5, w € (ﬁ,w,ﬁ) Thus, from Theorem
3.3 (see also Remark 3(i7) — (iii)) we get the assertions (i) — 1) and (i) — 2) in &.
Since & C &, we get the results in €.

(ii) Let a > 0. Due to Theorem 3.4, we have n(H¢) = 1 in L?(G). Therefore,
by Proposition 5(i7) we obtain

n(Hg) —p(w) =1
for p >5w > (Nfﬁ and 3 <p<bwe (wfﬁ,wk). Hence we get instability
of e'®% in & and consequently in £. From the other hand, for 1 < p < 3,w >
ﬁ and 3 < p < 5,w € (U, ), we have

n(Hy) = p(w) =1,
which yields stability of e®'®% in &. Thus, (ii) is proved. O
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Remark 6. (i) Let p > 5, a <0 and w > wj}, then n(HY) — p(w) = 2 in Li(G),
and therefore Theorem 3.3 does not provide any information about stability
of (I’k
(i) Let p > 3, then the orbital instability results follow from the spectral insta-
bility of @, applying the approach by [16] (see Remark 3(ii%)).

3.4. The Kirchhoff condition.
Proof of Theorem 1.2. The action functional for a = 0 has the form

So(V) = 3lIV'I[3 + $IIVIE - s lIVIEL, V= ()i €&

0
Then S{(®g) =: Hy = ( Ly 0 ) , where

0 LY

0 a? -1 0 a? p—1

L= ( d2+w PYh >5i,j , Ly = (‘@"‘W_‘Po )51'71' J
N

dom(LY) = dom(Ly) = { V € H*(G) : v1(0) = ... = vn(0), Y _}(0) =0
j=1

Our idea is to apply the stability Theorem 3.3 (substituting LT, and L3, by LY
and LY respectively, and ®; by ®).

The spectrum of LY has been studied in Theorem 3.5. Note that in LZ,(G)
the kernel of Lj is empty, moreover, n(L{|z2 (g)) = 1 since @9 € LZ(G) and
(LY®g, @)z < 0. It is easy to show that LY > 0 and ker(L3) = span{®,} (see the
proof of Proposition 1(¢)).

To complete the proof we need to study the sign of d,||®o|3. From (31) for
k =0 and o = 0 it follows that

N (p+ 2 T3 / 2
w||(I)O||2— Tl(T) w2(p=1) f/ 1—1t%) t,
0

which is obviously positive for 1 < p < 5, and is negative for p > 5. Finally, using

n(Ho|rz (g)) = 1, by Theorem 3.3, for 1 < p < 5 we get stability of e“t®y(r) in

Eeq, and for p > 5 instability of e™?®q(z) in €, and consequently in &. O

Remark 7. (i) An interesting connection with a problem on the line is due to
the fact that the space L2 (G) is similar to the one studied in [12].

(ii) Note that the orbital instability part of the above theorem follows from the
spectral instability since p > 5 (see Remark 3(ii4)).

4. The orbital stability of standing waves of the NLS-§ equation with re-
pulsive nonlinearity. In this section we study the orbital stability of the standing
waves of the NLS-§ equation with repulsive nonlinearity (# = —1 in (3)). The case
G = R was considered in [20]. The profile ®(z) of the standing wave e¢“'®(x)
satisfies the equation

H{® 4+ w® + &P '® =0, ®cD,. (35)
Equivalently @ is a critical point of the action functional defined as
w 1
Srep(V) = 3lIV'I[3 + $IVIE + 77 VI + 502(0), V= ()L, €&

In the following theorem we describe the solutions to equation (35).
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Theorem 4.1. Let o < 0 and 0 < w < %22 Then equation (35) has the unique
solution (up to permutations of the edges of G) ®, = (QOa);-V:l, where

o) = L g (W=D i (=)

Proof. Notice that H§ acts componentwise as the Laplacian, thus if ® = (goj)évzl
is the solution to (35), then ¢, is the L?(R,)-solution to the equation

— @ +wp; + ;P o =0. (36)
The most general L?(R )-solution to (36) is
1
1 -1 p=1
o o[ e (05, Y]

where o € C, |o] = 1 and y € R (see [20]). Therefore, the components ¢; of the
solution ® to (35) are given by
1
1 1 P
0i(x) = 0 [(erz)w csch? <(p2)\@$ + yyﬂ :

In order to solve (35) we need to impose boundary conditions (4). The continuity
condition in (4) and existence of the limits li%1+ @;(x) imply that y; = ... =yy =
z—

a>0and o1 = ... =0y = 0. We can omit the dependence on o without losing
generality. The second boundary condition in (4) rewrites as

N coth(a) = %' (37)

From equation (37) it follows that 0 < w < ]‘i‘,—zz and a = coth™* (N_\%). O

Remark 8. Note that, in contrast to the NLS-§ equation with focusing nonlinearity,
the solution to (35) does not exist for a > 0 due to the fact that the parameter a
in (37) has to be positive to guarantee the existence of lirgl+ @;(x).

xT—r

Proof of Theorem 1.3. The proof of the particular case G = R was given in [20].

The global well-posedness of the Cauchy problem for y = —1 follows from Lemma
2.5. Analogously to the previous case, the second variation of Sy, at ®, can be
written formally

« Lare O
(S (@) = 1, = (Vg 0 ) (35)
,rep
with

d? _
irep: <<_dl’2+w+p(pg 1)6i,j)a
d2

(Ql’rep = <( T2 +w+ (pg_l)éi’j) , dOHl(L(f’rep) = d0m<Lg,rep) = D,,
where d; ; is the Kronecker symbol.
Let us show that ker(L$ ) = span{®,}. It is obvious that ®, € ker(L§ ).
Any V = (vj)é-vzl € D, satisfies the following identity

-1d d Vi
" 1 2 J
—1)]- -‘rbﬂ)j + QDZ v; = 77 |:QDO T <>:| , I > 0.
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Pa

s [k Lot

d Uy 2

Thus, ker(Lg ) = span{®,}. The inequality
(LS e V. V)2 > (LS., V, V)2, Ve D,\{0},

1,rep 2,rep
implies immediately that L¢ ., > 0 and ker(L{,.,) = {0}.

By Weyl’s theorem, the essential spectrum of Lf,., and L§ ., coincides with
[w, 00). Moreover, there can be only finitely many isolated eigenvalues in (—oo,w).
Thus, except the zero eigenvalue, the spectrum of LY., and L, is positive and
bounded away from zero. Therefore, using the classical Lyapunov analysis and
noting that HY,, is non-negative due to (38), we obtain that e™t®,, is orbitally
stable. ]

Appendix. For convenience of the reader we formulate the following two results
from the extension theory (see [26]) essentially used in our stability analysis. The
first one reads as follows.

Proposition 6. (von Neumann decomposition) Let A be a closed densely defined
symmetric operator. Then the following decomposition holds

dom(A*) = dom(A4) & N1 (A) @ N_(A). (39)

Therefore, for u € dom(A*) such that u = f + f; + f—;, with f € dom(A), f1; €
Ni(A), we get

Remark 9. The direct sum in (39) is not necessarily orthogonal.

Proposition 7. Let A be a densely defined lower semi-bounded symmetric operator
(that is, A > ml) with finite deficiency indices ny(A) =n < oo in the Hilbert space
H, and let A be a self-adjoint extension of A. Then the spectrum ofAV in (—oo,m)
is discrete and consists of at most n eigenvalues counting multiplicities.

Below, using the above abstract results, we provide an estimate for the Morse
index of the operator L{; defined in Theorem 3.2 in the whole space L*(G).

Proposition 8. Let a #£0, k € {1, e [%}} and w > (Nfi;w Then the follow-
ing assertions hold.

(1) Ifa <0, thenn(L§{,) <k+1.

(ii) If a >0, then n(L§,) < N — k.

Proof. (i) In what follows we will use the notation

L= (( dd22 +w — p(k,;)? 1)%’) :
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First, note that L, is the self-adjoint extension of the following symmetric operator

Ve H%(G) : v1(0) = ... = vn(0) = 0,
T T oy_) N
Lox =&, dom(Lo) = > v3(0) =0, vi(b) = ... = vx(b) =0 [’
j=1

where b, = ar and ay is defined in Theorem 2.6. Below we show that the

(p— 1)\f
operator Lo k is non-negative, and ni(LO k) = k + 1. First, let us show that the

adjoint operator of Lo,k is given by
Ls,k = lgv
dom(Tz ) = V e L2(G) 1 01(0) = ... = un(0), Uppr, ..., on € HA(R,), | (40)
0.k V1, e € H2(Ry \ {bx}) N HY(Ry) '

Using standard arguments, one can prove that f‘Sk = I}’ (see [26, Chapter V, §17]).
We denote

Df . — V e LQ(Q) : 01(0) =..= UN(O), Vk4+1, -, UN € HQ(R_,_),
U1 vr € H(R\ {bi}) N HL(Ry,) |
It is easily seen that the inclusion Dg, C dom(i(”;,k) holds. Indeed, for any U =
(uj)y € D, and 'V = ()L, € dom(i07k), denoting U* = I} (U) € L?(G), we
get
(Lo V. U)z = ((V), U):

N k
b +
=(V,(U))s + Z [—vju; + vju * 4+ Z viuj — bi—
Jj=1

= (V. 5i(U)2 = (V,U)q,

which, by definition of the adjoint operator, means that U € dom(iak) or D, C
dom(iak).
Let us show the inverse inclusion D, 2 dom(iak). Take U € dom(f;ak)7 then

for any V € dom(io,k) we have
(Lo 4V, U)o = (B (V), U)

bk-‘r

k
= (V,I;(U))s + [—’U}l@‘ + Uj " Z v Uy — bk—
Jj=1

-

1

= (V,Lj, U)2 = (V, [} (U))a.

Thus, we arrive at the equality
k

N
Z [—v;uj + vju’j}go + Z [v;uj — vju’j]zllzf
j=1 j=1

N . (41)
= >0 (0)u5(0) + D7 0! (by) uy (byot) — s (b)) = 0

for any V € dom(fo’k).
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e Let W = (w;);2; € dom(Lo,x) be such that

wh(0) = ... = wiy(0) = wi(bg) = ... = wy(bg) = 0.

Then for U € dom(Lg ;) from (41) it follows that

N
> " w}(0)u;(0) = wi (0)uy (0) + wh(0)us(0) = 0. (42)

j=1

Recalling that gjl w’;(0) = wi(0) + wy(0) = 0 and assuming w,(0) # 0, we obtain
from (42) the équality u1(0) = u2(0). Repeating the similar arguments for W =
(wy)iL, € dom(Lg ) such that w}(0) = ... = w) (0) = w}(bg) = ... = wy,(br) =0,
we get u;(0) = u2(0) = u3(0) and so on. Finally taking W = (w;)_, € dom(io,k)
such that wiy (0) = w](by) = ... = w), (b)) = 0, we arrive at u;(0) = uz(0) = ... =
un—1(0) and consequently u;(0) = u2(0) = ... = upn(0).

o Let W = (w;)lL, € dom(Lg 1) be such that w}(0) = ... = w} (0) = wh(by) =
... = wp(bg) =0, then from (41) it follows that

k
D w (be) (u (brt) — (b)) = w} (bi) (ur (br+) — g (bp—)) = 0.

j=1

Assuming that wj(by) # 0, we get ug(byp+) = uy(bp—) or uy € H2(Ry \ {bx}) N
H'(Ry). Analogously we can show that u; € H?(Ry \ {bx}) N H(R;) for any

j €{L,....,k}. Thus, U € Dg, or Dg; 2 dom(iak) and (40) holds.
Let us show that the operator io,k is non-negative. First, note that every com-
ponent of the vector V = (v;)[L, € H?(G) satisfies the following identity

-1 d d v
o L NP1, — - AT Nl J R brt. (43
Yj + wv; p(@k,]) U @;c,j dx [(@k,g) dx <¢%7j>‘| y T € +\{ k?} ( )
Moreover, for j € {k+1, ..., N} the above equality holds also for by, since (¢x, ;) (br) #
0, for j € {k +1,..,N }. Using the above equality and integrating by parts, we get
for V € dom(Lg )

2 N 720 e
’ 27k,j
dz + E Vv + v — '
j=k+1 j=1 kil
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b+
The equality Z [v vj — v z" ’} = 0 is due to the fact that by is a first-order
ki by —

zero for ) (i.e. ¢y ;(by) # 0). Consider

d? T
b= (g dom = domiEn)

It is obvious that dom(iak) = dom(L}). Thus, due to the Neumann formula (39),

we obtain the decomposition (when io,k and Lj are assumed to act on complex-
valued functions)

dom(L ;) = dom(Lo k) ® N (Lo ) ®N_ (Lo ) = dom(Lo k) ® Ny (L) ® N_(Ly),
e N
where N4 (L) = span{®Y,, ¥l .. Wk} with ®9, = (e“/g(x_bk)) . and
j=
m_ (ei\/ﬂl(:cbk)’ _”,ez-\/i(f;bk)’ei\/ﬂ\:buqz,k)’ “/Zfl b) ..,ei\/ﬂi\(lxbk)> ’
where m € {1, ..., k}. Note that I(v/=:) is assumed to be positive.
Since ny (Ly) = k41, by [26, Chapter IV, Theorem 6], it follows that ny (Lo x) =
k 4+ 1. Finally, due to Proposition 7, n(L‘fk) <k+1

(#4) The proof is similar. In particular, we need to consider the operator L ) s
the self-adjoint extension of the non-negative symmetric operator

iO,ka = lg, dom(f;oyN,k) = {V €D, : UkJrl(bk) =..= ’I)N(bk) = 0},
where b, = —mak. The deficiency indices of fl(h N—k equal N — k (when

io N—k is assumed to act on complex-valued functions). Indeed, basically io N—k
is the restriction of the operator L 1 onto the subspace of codimension N — k. To

show the non-negativity of LO N—k, we need to use formula (43). It induces

(Lon—kV, V), 7 / (¥%.5) [dm <901: )Tdm

j= k+1 0

k ° d v 2 N 4,0” e
k,j
+ Z (90;45,])2 [dl‘ (w/J ) dx + Z *"U;-U] + sz' (p/ J‘|
i=17y k.j j=1 k. lo
N o K+ N br—  +oo d
k v
+ Z [U;”J JQ@’]] - Z (/Jr/)(%”)2 ldaz (go’] )] de
j=k+1 k,j b j=k+1 0 b+ k.j
kX 2 N
d v S%,‘(O)
+Z/(<P;c,j)2 [d < 2 ) dx—l—z v3(0)v;(0) —v;5(0) J(O) >
=17 Pk i=1 i
N

> 0.

wz,j(O)] _ B(0)(p ~ DN — 2k - o)
2c0

Finally, due to Proposition 7, we get the result. O
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Remark 10. (¢) It is easily seen that

N /!
(0 2 0 ~1 N — 2%k 2 9
S [or @05 (0) - 20 2@ | _ O DN — 28 —a?) _,
=l @k,j(o) 2c
for a < 0, and therefore the restriction of L{ ; onto the subspace
{V e D, :vi(bg) = ... = vi(bg) =0}

is not a non-negative operator. Thus, we need to assume additionally that
v1(0) = ... = vy (0) = 0.

(#4) The result of item (i¢) (for o > 0) of the above Proposition can be extended
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