Machine learning: a practical approach on the statistical learning theory (2018)
- Authors:
- USP affiliated authors: MELLO, RODRIGO FERNANDES DE - ICMC ; PONTI, MOACIR ANTONELLI - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-319-94989-5
- Assunto: APRENDIZADO COMPUTACIONAL
- Keywords: Statistical Learning Theory; Assessing Classification Algorithms; Support Vector Machines; Data Science
- Language: Inglês
- Imprenta:
- Descrição física: 380 p
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MELLO, Rodrigo Fernandes de e PONTI, Moacir Antonelli. Machine learning: a practical approach on the statistical learning theory. . Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-319-94989-5. Acesso em: 28 maio 2025. , 2018 -
APA
Mello, R. F. de, & Ponti, M. A. (2018). Machine learning: a practical approach on the statistical learning theory. Cham: Springer. doi:10.1007/978-3-319-94989-5 -
NLM
Mello RF de, Ponti MA. Machine learning: a practical approach on the statistical learning theory [Internet]. 2018 ;[citado 2025 maio 28 ] Available from: https://doi.org/10.1007/978-3-319-94989-5 -
Vancouver
Mello RF de, Ponti MA. Machine learning: a practical approach on the statistical learning theory [Internet]. 2018 ;[citado 2025 maio 28 ] Available from: https://doi.org/10.1007/978-3-319-94989-5 - Color quantization in transfer learning and noisy scenarios: an empirical analysis using convolutional networks
- Investigating 3D convolutional layers as feature extractors for anomaly detection systems applied to surveillance videos
- Better than counting seconds: identifying fallers among healthy elderly using fusion of accelerometer features and dual-task timed up and go
- Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis
- Compact descriptors for sketch-based image retrieval using a triplet loss convolutional neural network
- An incremental linear-time learning algorithm for the optimum-path forest classifier
- Relevance image sampling from collection using importance selection on randomized optimum-path trees
- Identifying frailty levels and associated factors in a population living in the context of poverty and social vulnerability
- Learning features on acceleration data for fall risk computer-aided diagnosis
- Improving accuracy and speed of optimum-path forest classifier using combination of disjoint training subsets
Informações sobre o DOI: 10.1007/978-3-319-94989-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas