Machine learning: a practical approach on the statistical learning theory (2018)
- Authors:
- USP affiliated authors: MELLO, RODRIGO FERNANDES DE - ICMC ; PONTI, MOACIR ANTONELLI - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-319-94989-5
- Assunto: APRENDIZADO COMPUTACIONAL
- Keywords: Statistical Learning Theory; Assessing Classification Algorithms; Support Vector Machines; Data Science
- Language: Inglês
- Imprenta:
- Descrição física: 380 p
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MELLO, Rodrigo Fernandes de e PONTI, Moacir Antonelli. Machine learning: a practical approach on the statistical learning theory. . Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-319-94989-5. Acesso em: 21 fev. 2026. , 2018 -
APA
Mello, R. F. de, & Ponti, M. A. (2018). Machine learning: a practical approach on the statistical learning theory. Cham: Springer. doi:10.1007/978-3-319-94989-5 -
NLM
Mello RF de, Ponti MA. Machine learning: a practical approach on the statistical learning theory [Internet]. 2018 ;[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/978-3-319-94989-5 -
Vancouver
Mello RF de, Ponti MA. Machine learning: a practical approach on the statistical learning theory [Internet]. 2018 ;[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/978-3-319-94989-5 - Color quantization in transfer learning and noisy scenarios: an empirical analysis using convolutional networks
- Investigating 3D convolutional layers as feature extractors for anomaly detection systems applied to surveillance videos
- Mobile inertial sensors for fall risk screening and prediction
- A decision cognizant Kullback-Leibler divergence
- Deep manifold alignment for mid-grain sketch based image retrieval
- Como funciona o deep learning
- Sketching out the details: sketch-based image retrieval using convolutional neural networks with multi-stage regression
- Generalization of feature embeddings transferred from different video anomaly detection domains
- An incremental linear-time learning algorithm for the optimum-path forest classifier
- Relevance image sampling from collection using importance selection on randomized optimum-path trees
Informações sobre o DOI: 10.1007/978-3-319-94989-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
