Exportar registro bibliográfico

Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional (2017)

  • Authors:
  • Autor USP: MARTINS, MARIA CRISTINA - ESALQ
  • Unidade: ESALQ
  • Sigla do Departamento: LCE
  • Subjects: DINÂMICA DE POPULAÇÕES; DISTRIBUIÇÕES (PROBABILIDADE); EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS; ESTATÍSTICA COMPUTACIONAL; INFERÊNCIA BAYESIANA; MODELOS MATEMÁTICOS
  • Language: Português
  • Abstract: Processos estocásticos complexos são muitas vezes utilizados em modelagem, com o intuito de capturar uma maior proporção das principais características dos sistemas biológicos. A descrição do comportamento desses sistemas tem sido realizada por muitos amostradores baseados na distribuição a posteriori de Monte Carlo. Modelos probabilísticos que descrevem esses processos podem levar a funções de verossimilhança computacionalmente intratáveis, impossibilitando a utilização de métodos de inferência estatística clássicos e os baseados em amostragem por meio de MCMC. A Computação Bayesiana Aproximada (ABC) é considerada um novo método de inferência com base em estatísticas de resumo, ou seja, valores calculados a partir do conjunto de dados (média, moda, variância, etc.). Essa metodologia combina muitas das vantagens da eficiência computacional de processos baseados em estatísticas de resumo com inferência estatística bayesiana uma vez que, funciona bem para pequenas amostras e possibilita incorporar informações passadas em um parâmetro e formar uma priori para análise futura. Nesse trabalho foi realizada uma comparação entre os métodos de estimação, clássico, bayesiano e ABC, para estudos de simulação de modelos simples e para análise de dados de dinâmica populacional. Foram implementadas no software R as distâncias modular e do máximo como alternativas de função distância a serem utilizadas no ABC, além do algoritmo ABC de rejeição para equações diferenciais estocásticas. Foiproposto sua utilização para a resolução de problemas envolvendo modelos de interação populacional. Os estudos de simulação mostraram melhores resultados quando utilizadas as distâncias euclidianas e do máximo juntamente com distribuições a priori informativas. Para os sistemas dinâmicos, a estimação por meio do ABC apresentou resultados mais próximos dos verdadeiros bem como menores discrepâncias, podendo assim ser utilizado como um método alternativo de estimação
  • Imprenta:
  • Data da defesa: 29.09.2017
  • Acesso à fonte
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARTINS, Maria Cristina. Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional. 2017. Tese (Doutorado) – Universidade de São Paulo, Piracicaba, 2017. Disponível em: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/. Acesso em: 23 jan. 2026.
    • APA

      Martins, M. C. (2017). Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional (Tese (Doutorado). Universidade de São Paulo, Piracicaba. Recuperado de http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/
    • NLM

      Martins MC. Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional [Internet]. 2017 ;[citado 2026 jan. 23 ] Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/
    • Vancouver

      Martins MC. Computação bayesiana aproximada: aplicações em modelos de dinâmica populacional [Internet]. 2017 ;[citado 2026 jan. 23 ] Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-21032018-135852/


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026