Exportar registro bibliográfico


Metrics:

Microbial habitability of Europa sustained by radioactive sources (2018)

  • Authors:
  • Autor USP: RODRIGUES, FABIO - IQ
  • Unidade: IQ
  • DOI: 10.1038/s41598-017-18470-z
  • Subjects: ASTROBIOLOGIA; RADIÓLISIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-18470-z (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALTAIR, Thiago; AVELLAR, Marcio G. B; RODRIGUES, Fabio; GALANTE, Douglas. Microbial habitability of Europa sustained by radioactive sources. Scientific Reports, London, v. 8, p. 1-8 art. 260, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-017-18470-z > DOI: 10.1038/s41598-017-18470-z.
    • APA

      Altair, T., Avellar, M. G. B., Rodrigues, F., & Galante, D. (2018). Microbial habitability of Europa sustained by radioactive sources. Scientific Reports, 8, 1-8 art. 260. doi:10.1038/s41598-017-18470-z
    • NLM

      Altair T, Avellar MGB, Rodrigues F, Galante D. Microbial habitability of Europa sustained by radioactive sources [Internet]. Scientific Reports. 2018 ; 8 1-8 art. 260.Available from: http://dx.doi.org/10.1038/s41598-017-18470-z
    • Vancouver

      Altair T, Avellar MGB, Rodrigues F, Galante D. Microbial habitability of Europa sustained by radioactive sources [Internet]. Scientific Reports. 2018 ; 8 1-8 art. 260.Available from: http://dx.doi.org/10.1038/s41598-017-18470-z

    Referências citadas na obra
    Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
    Russell, M. J. et al. The Drive to Life on Wet and Icy Worlds. Astrobiology 14, 308–343 (2014).
    Hand, K. P., Carlson, R. W. & Chyba, C. F. Energy, Chemical Disequilibrium, and Geological Constraints on Europa. Astrobiology 7, 1006–1022 (2007).
    Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7, 951–970 (2007).
    Cockell, C. S. et al. Habitability: A Review. Astrobiology 16, 89–117 (2016).
    Vance, S. et al. Hydrothermal systems in small ocean planets. Astrobiology 7, 987–1005 (2007).
    Hoehler, T. M. An Energy Balance Concept for Habitability. Astrobiology 7, 824–838 (2007).
    Chyba, C. F. PLANETARY SCIENCE: Enhanced: Life Without Photosynthesis. Science (80-.). 292, 2026–2027 (2001).
    Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer solar system. Icarus 163, 263–289 (2003).
    Grasset, O. et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013).
    Kargel, J. et al. Europa’s Crust and Ocean: Origin, Composition, and the Prospects for Life. Icarus 148, 226–265 (2000).
    McKay, C. P., Anbar, A. D., Porco, C. & Tsou, P. Follow the Plume: The Habitability of Enceladus. Astrobiology 14, 352–355 (2014).
    Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. 356, 155–159 (2017).
    Draganic, I. G. & Draganic, Z. D. The Radiation Chemistry of Water. 26 (1971).
    Draganic, I. G. Radiolysis of water: a look at its origin and occurrence in the nature. 72, 181–186 (2005).
    Pastina, B. & Laverne, J. A. Effect of Molecular Hydrogen on Hydrogen Peroxide in Water Radiolysis. 9316–9322 (2001).
    Lefticariu, L., Pratt, L. A., LaVerne, J. A. & Schimmelmann, A. Anoxic pyrite oxidation by water radiolysis products - A potential source of biosustaining energy. Earth Planet. Sci. Lett. 292, 57–67 (2010).
    Draganic, I. G. et al. 1983. Natural nuclear reactors and ionizing radiation in the Precambrian. Precambrian Res., 20: 283–298. 20, 283–298 (1983).
    Lin, L. H. et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophys. Geosystems 6, 1–13 (2005).
    Chivian, D. et al. Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. Science (80-.). 322, 275–278 (2008).
    Lin, L.-H. et al. Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome. Science (80-.). 314, 479–482 (2006).
    Dubessy, J. et al. Radiolysis evidenced by Hz-O2 and Hz-bearing fluid inclusions in three uranium deposits. 52 (1988).
    Savary, V. & Pagel, M. The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16. Geochim. Cosmochim. Acta 61, 4479–4494 (1997).
    Atri, D. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe. J. R. Soc. Interface 13, 20160459 (2016).
    Melott, A. L. A Possible Role for Stochastic Astrophysical Ionizing Radiation Events in the Systematic Disparity between Molecular and Fossil Dates. Astrobiology 17, 87–90 (2017).
    Marinho, F., Paulucci, L. & Galante, D. Propagation and energy deposition of cosmic rays’ muons on terrestrial environments. Int. J. Astrobiol. 13, 1–5 (2014).
    Bouquet, A., Glein, C. R., Wyrick, D. & Waite, J. H. Alternative Energy: Production of H 2 by Radiolysis of Water in the Rocky Cores of Icy Bodies. Astrophys. J. 840, L8 (2017).
    Dzaugis, M. E. et al. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer. 7, 1–12 (2016).
    Onstott, T. C. Deep gold mines of South Africa: windows into the subsurface biosphere. Proc. SPIE 3111, (344–357 (1997).
    Sohl, F. et al. Subsurface water oceans on icy satellites: Chemical composition and exchange processes. Space Sci. Rev. 153, 485–510 (2010).
    Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).
    Pastina, B. & LaVerne, J. A. Effect of Molecular Hydrogen on Hydrogen Peroxide in Water Radiolysis. J. Phys. Chem. A 105, 9316–9322 (2001).
    Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 3, 235–253 (2011).
    Draganić, I. G., Bjergbakke, E., Draganić, Z. D. & Sehested, K. Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species. Precambrian Res. 52, 337–345 (1991).
    Lide, D. R. CRC Handbook of Chemistry and Physics. eBook 3485 978-1466571143 (2003).
    Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).
    Marion, G. M., Fritsen, C. H., Eicken, H. & Payne, M. C. Factors, Potential Habitats, and Earth Analogues. Astrobiology 3, 785–811 (2003).
    Dzaugis, M. E., Spivack, A. J. & Hondt, S. D. A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids x. Radiat. Phys. Chem. 115, 127–134 (2015).
    Russell, M. J. & Arndt, N. T. Geodynamic and metabolic cycles in the Hadean. Biogeosciences Discuss. 2, 97–111 (2005).
    Pasek, Ma & Greenberg, R. Acidification of Europa’s subsurface ocean as a consequence of oxidant delivery. Astrobiology 12, 151–9 (2012).
    Čadek, O. et al. Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43, 5653–5660 (2016).
    Zolotov, M. Y. An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, 1–5 (2007).
    McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The Possible Origin and Persistence of Life on Enceladus and Detection of Biomarkers in the Plume. Astrobiology 8, 909–919 (2008).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020