Exportar registro bibliográfico


Metrics:

GQ-11: a new PPAR agonist improves obesity-induced metabolicalterations in 'LDLr −/− mice (2018)

  • Authors:
  • USP affiliated authors: TURATO, WALTER MIGUEL - FCF ; TROSSINI, GUSTAVO HENRIQUE GOULART - FCF ; ABDALLA, DULCINEIA SAES PARRA - FCF
  • School: FCF
  • DOI: 10.1038/s41366-018-0011-7
  • Subjects: OBESIDADE; RATOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • DOI
    Informações sobre o DOI: 10.1038/s41366-018-0011-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Jacqueline Cavalcante; OLIVEIRA, Edson Mendes de; TURATO, Walter Miguel; et al. GQ-11: a new PPAR agonist improves obesity-induced metabolicalterations in 'LDLr −/− mice. International Journal of Obesity, London, v. 42, p. 1062–1072 , 2018. DOI: 10.1038/s41366-018-0011-7.
    • APA

      Silva, J. C., Oliveira, E. M. de, Turato, W. M., Trossini, G. H. G., Maltarollo, V. G., Pitta, M. G. R., et al. (2018). GQ-11: a new PPAR agonist improves obesity-induced metabolicalterations in 'LDLr −/− mice. International Journal of Obesity, 42, 1062–1072 . doi:10.1038/s41366-018-0011-7
    • NLM

      Silva JC, Oliveira EM de, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta I da R, Heras B de L, Boscá L, Rudnicki M, Abdalla DSP. GQ-11: a new PPAR agonist improves obesity-induced metabolicalterations in 'LDLr −/− mice. International Journal of Obesity. 2018 ; 42 1062–1072 .
    • Vancouver

      Silva JC, Oliveira EM de, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta I da R, Heras B de L, Boscá L, Rudnicki M, Abdalla DSP. GQ-11: a new PPAR agonist improves obesity-induced metabolicalterations in 'LDLr −/− mice. International Journal of Obesity. 2018 ; 42 1062–1072 .

    Referências citadas na obra
    Scully T. Public health: society at large. Nature. 2014;508:S50–1.
    Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–56.
    Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2–11.
    Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol. 2013;4:93.
    Cartier A. The inflammatory profile associated with abdominal obesity. CMR E J. 2010;3:15–9.
    Hayan Xu, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.
    Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10:355–61.
    Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.
    Watkins SM, Reifsnyder PR, Pan HJ, German JB, Leiter EH. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res. 2002;43:1809–17.
    Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451–6.
    Chen R, Yan J, Liu P, Wang Z. Effects of thiazolidinedione therapy on inflammatory markers of type 2 diabetes: a meta-analysis of randomized controlled trials. PLos ONE. 2015;10:e0123703. eCollection
    Harmel ALP, Kendall DM, Buse JB, Boyle PJ, Marchetti A, Lau H. Impact of adjunctive thiazolidinedione therapy on blood lipid levels and glycemic control in patients with type 2 diabetes. Curr Med Res Opin. 2004;20:215–23.
    Hetzel J, Balletshofer B, Rittig K, Walcher D, Kratzer W, Hombach V, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol. 2005;25:1804–9.
    Pasceri V, Wu HD, Willerson JT, Yeh ET. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation. 2000;101:235–8.
    Barros CD, Amato AA, de Oliveira TB, Iannini KB, Silva AL, Silva TG, et al. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg Med Chem. 2010;18:3805–11.
    Jones P, Willett RC, Glen AR, Taylor R. Development and validation of a generic algorithm for flexible docking G. J Mol Biol. 1997;267:727–48.
    Dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, et al. Different binding and recognition modes of Gl479, a dual agonist of peroxisome proliferator-activated receptor Alpha/Gamma. J Struct Biol. 2015;191:332.
    Traves PG, Hortelano S, Zeini M, Chao TH, Lam T, Neuteboom ST, et al. Selective activation of liver X receptors by acanthoic acid-related diterpenes. Mol Pharmacol. 2007;71:1545–53.
    National research council (US) committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals, 8th ed. National Academies Press: Washington, DC, USA; 2011.
    Silva JC, Cesar FA, Oliveira EM, Turato WM, Tripodi GL, Castilho G, et al. New PPARγ partial agonist improves obesity-induces metabolic alterations and atherosclerosis in LDLr−/− mice. Pharmacol Res. 2016;104:49–60.
    Amato AA, Rajagopalan S, Lin JZ, Carvalho BM, Figueira ACM, Lu J, et al. GQ-16, a novel peroxisome-proliferator activator receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. J Biol Chem. 2012;287:28169–79.
    Liao L, Zhang XD, Li J, Zhang ZW, Yang CC, Rao CL, et al. Pioglitazone attenuates lipopolysaccharide-induced depression-like behaviors, modulates NFKB/IL6/STAT3, CREB/BDNF pathways and central serotonergic neurotransmission in mice. Int Immunopharmacol. 2017;49:178–86.
    Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–32.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.
    Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KL, et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol. 2005;25:1903–9.
    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.
    Nie J, Sage EH. SPARC inhibits adipogenesis by its enhacement of β-catenin signaling. J Biol Chem. 2009;284:1279–90.
    Van Doorn C, Macht VA, Grillo CA, Reagen LP. Leptin resistance and hippocampal behavioral deficits. Physiol Behav. 2017;3:210–21.
    Nawrocki AR, Rajala MW, Tomas E, Paivani UB, Saha AK, Trumbauer ME, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biolol Chem. 2006;281:2654–60.
    Wallberg-Henriksson H, Zierath JR. GLUT4: a key player regulating glucose homeosthasis? Insights from transgenic and knockout mice. Mol Membr Biol. 2001;18:205–11.
    Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ, et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem. 2003;278:30614–23.
    Lastra G, Manrique C, Jia G, Sowers JR. The VASP road to NAFLD: a macrophage detour. Diabetes. 2015;64:2711–13.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.
    Wang S, Smith JD. ABCA1 and nascent HDL biogenesis. Biofactors. 2014;40:547–54.
    Rigotti A, Trigatti BL, Penmann M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the High-Density Lipoprotein (HDL) receptor scavenger class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA. 1997;94:12610–5.
    Nakamura T, Shibata N, Nishimoto-Shibata T, Feng D, Ikemoto M, Motojima K, et al. Regulation of SR-BI protein levels by phosphorylation of its associated protein, PDK1. Proc Natl Acad Sci USA. 2005;102:13404–9.
    Derosa G, Sahebkar A, Maffioli P. The role of various PPARs and their ligands in clinical practice. J Cell Physiol. 2018;233:153–161.
    Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang NHDL. ABC transporters and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7:365–75.
    Karim MF, Al-Mahtab M, Rahman S, Debnath CR. Non-alcoholic fatty liver disease (NAFLD)—A review. Mymensingh Med J. 2015;24:873–80.
    Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293–307.
    Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 2002;16:22–6.
    Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.
    Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science. 2002;296:1644–6.
    Duan M, Zhou B, Zhou X, Yuan G. TZDs inhibit mouse osteoblastic MC3T3 E1 cell proliferation in part through the Wnt signaling pathway. J Investig Med. 2015;63:758–64.
    Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activates receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta. 2007;1771:915–25.
    Kroker AJ, Brunin JB. Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. 2015;2015:816856.
    Festa A, D’Agostino A Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2002;102:42–7.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020