The free commutative automorphi 2-generated loop of nilpoten y lass 3 (2012)
- Authors:
- USP affiliated authors: GRICHKOV, ALEXANDRE - IME ; BARROS, DYLENE AGDA SOUZA DE - IME
- Unidade: IME
- Assunto: LAÇOS
- Keywords: free commutative automorphic loop; automorphic loop; associator calculus
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Commentationes Mathematicae Universitatis Carolinae
- ISSN: 0010-2628
- Volume/Número/Paginação/Ano: v. 53, n. 3, p. 321-336, 2012
-
ABNT
BARROS, Dylene Agda Souza de e GRICHKOV, Alexandre e VOJTECHOVSKY, Petr. The free commutative automorphi 2-generated loop of nilpoten y lass 3. Commentationes Mathematicae Universitatis Carolinae, v. 53, n. 3, p. 321-336, 2012Tradução . . Disponível em: https://cmuc.karlin.mff.cuni.cz/pdf/cmuc1203/bargri.pdf. Acesso em: 20 jan. 2026. -
APA
Barros, D. A. S. de, Grichkov, A., & Vojtechovsky, P. (2012). The free commutative automorphi 2-generated loop of nilpoten y lass 3. Commentationes Mathematicae Universitatis Carolinae, 53( 3), 321-336. Recuperado de https://cmuc.karlin.mff.cuni.cz/pdf/cmuc1203/bargri.pdf -
NLM
Barros DAS de, Grichkov A, Vojtechovsky P. The free commutative automorphi 2-generated loop of nilpoten y lass 3 [Internet]. Commentationes Mathematicae Universitatis Carolinae. 2012 ; 53( 3): 321-336.[citado 2026 jan. 20 ] Available from: https://cmuc.karlin.mff.cuni.cz/pdf/cmuc1203/bargri.pdf -
Vancouver
Barros DAS de, Grichkov A, Vojtechovsky P. The free commutative automorphi 2-generated loop of nilpoten y lass 3 [Internet]. Commentationes Mathematicae Universitatis Carolinae. 2012 ; 53( 3): 321-336.[citado 2026 jan. 20 ] Available from: https://cmuc.karlin.mff.cuni.cz/pdf/cmuc1203/bargri.pdf - Sobre a classificação dos A-loops comutativos de ordem 'p POT 3' e 'p POT 4'
- Estrutura e exemplos de A-Loops comutativos finitos
- On simple Lie algebras over a field of characteristic 2
- Algebraic Bol loops
- Exactness of Complexes of Modules over Schur Superalgebras
- Sylow's theorem for Moufang loops
- Solvable, reductive and quasireductive supergroups
- h1 ≠ h1 for Anderson t-motives
- Simple classical Lie algebras in characteristic 2 and their gradations, II
- Classification of subalgebras of the Cayley algebra over a finite field
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
