Algebraizable logics and a functorial encoding of its morphisms (2015)
- Authors:
- Autor USP: MARIANO, HUGO LUIZ - IME
- Unidade: IME
- Assunto: LÓGICA MATEMÁTICA
- Language: Inglês
- Imprenta:
- Publisher: Turkish Logic Society
- Publisher place: Istanbul
- Date published: 2015
- Source:
- Conference titles: World Congress and School on Universal Logic
-
ABNT
PINTO, Darllan Conceição e MARIANO, Hugo Luiz. Algebraizable logics and a functorial encoding of its morphisms. 2015, Anais.. Istanbul: Turkish Logic Society, 2015. Disponível em: https://www.uni-log.org/start5.html. Acesso em: 10 fev. 2026. -
APA
Pinto, D. C., & Mariano, H. L. (2015). Algebraizable logics and a functorial encoding of its morphisms. In Handbook of the 5th World Congress and School on Universal Logic. Istanbul: Turkish Logic Society. Recuperado de https://www.uni-log.org/start5.html -
NLM
Pinto DC, Mariano HL. Algebraizable logics and a functorial encoding of its morphisms [Internet]. Handbook of the 5th World Congress and School on Universal Logic. 2015 ;[citado 2026 fev. 10 ] Available from: https://www.uni-log.org/start5.html -
Vancouver
Pinto DC, Mariano HL. Algebraizable logics and a functorial encoding of its morphisms [Internet]. Handbook of the 5th World Congress and School on Universal Logic. 2015 ;[citado 2026 fev. 10 ] Available from: https://www.uni-log.org/start5.html - Realizing profinite reduced special groups
- Representation theory of logics: a categorial approach
- On profinite structures
- Categorial forms of the axiom of choice
- Expansions of Galois theory in algebra: infinity Galois theory and applications
- Proceedings of the XVIII Brazilian Logic Conference. [Preface]
- A global approach to AECs
- Towards a good notion of categories of logics
- Categorias modeláveis
- Contribuições à teoria dos grupos especiais
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
