Exportar registro bibliográfico


Metrics:

Covariant quantizations in plane and curved spaces (2017)

  • Authors:
  • USP affiliated authors: ASSIRATI, JOÃO LUIS MELONI - IF ; GUITMAN, DMITRI MAXIMOVITCH - IF
  • Unidade: IF
  • DOI: 10.1140/epjc/s10052-017-5041-0
  • Subjects: MECÂNICA QUÂNTICA; SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1140/epjc/s10052-017-5041-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ASSIRATI, João Luis Meloni; GUITMAN, Dmitri Maximovitch. Covariant quantizations in plane and curved spaces. EUROPEAN PHYSICAL JOURNAL C, New York, v. 77, n. 7, p. 476, 2017. Disponível em: < https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5041-0 > DOI: 10.1140/epjc/s10052-017-5041-0.
    • APA

      Assirati, J. L. M., & Guitman, D. M. (2017). Covariant quantizations in plane and curved spaces. EUROPEAN PHYSICAL JOURNAL C, 77( 7), 476. doi:10.1140/epjc/s10052-017-5041-0
    • NLM

      Assirati JLM, Guitman DM. Covariant quantizations in plane and curved spaces [Internet]. EUROPEAN PHYSICAL JOURNAL C. 2017 ; 77( 7): 476.Available from: https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5041-0
    • Vancouver

      Assirati JLM, Guitman DM. Covariant quantizations in plane and curved spaces [Internet]. EUROPEAN PHYSICAL JOURNAL C. 2017 ; 77( 7): 476.Available from: https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5041-0

    Referências citadas na obra
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)
    P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, 1964)
    D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)
    F.A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966)
    F.A. Berezin, Quantization. Izv. AN SSSR Ser. Math. 38(5), 1116–1175 (1974)
    F.A. Berezin, General concept of quantization. Commun. Math. Phys. 40(2), 153–174 (1975)
    F.A. Berezin, M.A. Shubin, The Schrödinger Equation (Kluwer Academic Publishers, Boston, 1991)
    D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint Extensions in Quantum Mechanics (Birkhäuser, Springer, Berlin, 2012)
    F.A. Berezin, Non-Wiener functional integrals. Theor. Math. Phys. 6(2), 194–211 (1971)
    M. Born, P. Jordan, On quantum mechanics. Zs. fü r Phys. 34, 858–888 (1925)
    B.S. DeWitt, Dynamical theory in curved spaces. I. A review of the classical and quantum action principles. Rev. Mod. Phys. 29(3), 377–396 (1957)
    G.A. Ringwood, Canonical and Feynman quantization in Riemannian spaces. J. Phys. A 9(8), 1253–1256 (1976)
    H. Dekker, On the path integral for diffusion in curved spaces. Physica 103A, 586–596 (1980)
    K.S. Cheng, Quantization of a general dynamical system by Feynman’s path integration formulation. J. Math. Phys. 13, 1723–1726 (1972)
    G.M. Gavazzi, Covariant functional quantization of a particle in general metric. IL Nuovo Cimento 101A(2), 241–248 (1989)
    N. Ogawa, K. Fujii, A. Kobushukin, Quantum mechanics in Riemannian manifold. Prog. Theor. Phys. 83(5), 894–905 (1990)
    A. Foerster, H.O. Girotti, P.S. Kuhn, Nonrelativistic quantum particle in a curved space as a constrained system. Phys. Lett. A 195, 301–306 (1994)
    A. Saa, Quantum dynamics of non-relativistic particles and isometric embeddings. Class. Quantum Gravity 14, 385–390 (1997)
    D.M. Gitman, I.V. Tyutin, Canonical quantization of the relativistic particle. JETP Lett. 51(4), 214 (1990)
    D.M. Gitman, I.V. Tyutin, Classical and quantum mechanics of the relativistic particle. Class. Quantum Gravity 7, 2131–2144 (1990)
    S.P. Gavrilov, D.M. Gitman, Quantization of point-like particles and consistent relativistic quantum mechanics. Int. J. Mod. Phys. A 15, 4499–4538 (2000)
    S.P. Gavrilov, D.M. Gitman, Quantization of the relativistic particle. Class. Quantum Gravity 17, 133–139 (2000)
    S.P. Gavrilov, D.M. Gitman, Quantization of a spinning particle in an arbitrary background. Class. Quantum Gravity 18, 2989–2998 (2001)
    B. Podolsky, Quantum-mechanically correct form of Hamiltonian function for conservative systems. Phys. Rev. 32, 812–816 (1928)
    B. DeWitt, Point transformations in quantum mechanics. Phys. Rev. 85, 653–661 (1952)
    J.-L. Gervais, A. Jevicki, Point canonical transformations in the path integral. Nucl. Phys. B 110, 93–112 (1976)
    B. Carter, Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D 16, 3395–3414 (1977)
    K. Simon, Quantization in curvilinear coordinates. Am. J. Phys. 33, 60–61 (1965)
    H. Essén, Quantization and independent coordinates. Am. J. Phys. 46, 983–988 (1978)
    Z.J. Liu, M. Quian, Gauge invariant quantization on Riemannian manifolds. Trans. Am. Math. Soc. 331, 321–333 (1992)
    C. Duval, V. Ovsienko, Conformally equivariant quantum Hamiltonians. Sel. Math. New Ser. 7, 291–320 (2001)
    S.E. Loubon Djounga, Conformally invariant quantization at order three. Lett. Math. Phys. 64, 203–212 (2003)
    C. Duval, G. Valent, Quantum integrability of quadratic Killing tensors. J. Math. Phys. 46, 053516 (2005)
    M. Blaszak, Z. Domański, Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure. Ann. Phys. 339, 89–108 (2013)
    E. Schrödinger, Quantisierung als Eigenwertproblem. Ann. d. Physik 384(79), 361–376 (1926)
    E. Schrödinger, Quantisierung als Eigenwertproblem. Ann. Phys. 384(79), 489–527 (1926)
    C. Eckart, Operator calculus and the solution of the equations of quantum dynamics. Phys. Rev. 28, 711–726 (1926)
    P.A.M. Dirac, Quantum mechanics and a preliminary investigation of the hydrogen atom. Proc. R. Soc. A 110, 561–579 (1926)
    W. Pauli, Über das Wasserstoffspektrum vom Standpunkt tier neuen Quantenmechanik. Zeits. f. Physik 36, 336–363 (1926)
    J.L.M. Assirati, Quantização Covariante de Sistemas Mecânicos Tese de doutorado (Instituto de Fisica USP, Brazil, 2010)
    H. Weyl, The Theory of Groups and Quantum Mechanics (Dover Publications, New York, 1931)
    S. Kobayashi, K. Nomizu, Foundations of differential geometry, I, II (Wiley-Interscience, New York, 1963, 1969)
    R.C. Tolman, The Principles of Statistical Mechanics (Dover, New York, 1979)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021