On steady states in a collisionless plasma (1996)
- Authors:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co
- Subjects: MECÂNICA ESTATÍSTICA; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES INTEGRAIS
- Language: Inglês
- Source:
- Título: Communications on Pure and Applied Mathematics
- ISSN: 0010-3640
- Volume/Número/Paginação/Ano: v. 49, n. 11, p. 1145-1174, 1996
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUO, Yan e RAGAZZO, Clodoaldo Grotta. On steady states in a collisionless plasma. Communications on Pure and Applied Mathematics, v. 49, n. 11, p. 1145-1174, 1996Tradução . . Disponível em: https://doi.org/10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co;2-c. Acesso em: 29 dez. 2025. -
APA
Guo, Y., & Ragazzo, C. G. (1996). On steady states in a collisionless plasma. Communications on Pure and Applied Mathematics, 49( 11), 1145-1174. doi:10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co -
NLM
Guo Y, Ragazzo CG. On steady states in a collisionless plasma [Internet]. Communications on Pure and Applied Mathematics. 1996 ; 49( 11): 1145-1174.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co;2-c -
Vancouver
Guo Y, Ragazzo CG. On steady states in a collisionless plasma [Internet]. Communications on Pure and Applied Mathematics. 1996 ; 49( 11): 1145-1174.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co;2-c - Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations
- On the force and torque on systems of rigid bodies: A remark on an integral formula due to Howe
- Scalar Autonomous Second Order Ordinary Differential Equations
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the motion of two-dimensional vortices with mass
- Chaos and integrability in a nonlinear wave equation
- On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d
- Equivalence between simple multilayered and homogeneous laboratory-based rheological models in planetary science
- The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies
- Irregular dynamics and homoclinic orbits to Hamiltoniansaddle-centers
Informações sobre o DOI: 10.1002/(sici)1097-0312(199611)49:11%3C1145::aid-cpa1%3E3.0.co (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
