Exportar registro bibliográfico


Metrics:

Active learning with visualization for text data (2017)

  • Authors:
  • Autor USP: MINGHIM, ROSANE - ICMC
  • Unidade: ICMC
  • DOI: 10.1145/3038462.3038469
  • Subjects: APRENDIZADO COMPUTACIONAL; VISUALIZAÇÃO
  • Keywords: active learning; text classification
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: ACM Workshop on Exploratory Search and Interactive Data Analytics - ESIDA
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1145/3038462.3038469 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      HUANG, Lulu; MATWIN, Stan; CARVALHO, Eder J. de; MINGHIM, Rosane. Active learning with visualization for text data. Anais.. New York: ACM, 2017.Disponível em: DOI: 10.1145/3038462.3038469.
    • APA

      Huang, L., Matwin, S., Carvalho, E. J. de, & Minghim, R. (2017). Active learning with visualization for text data. In Proceedings. New York: ACM. doi:10.1145/3038462.3038469
    • NLM

      Huang L, Matwin S, Carvalho EJ de, Minghim R. Active learning with visualization for text data [Internet]. Proceedings. 2017 ;Available from: http://dx.doi.org/10.1145/3038462.3038469
    • Vancouver

      Huang L, Matwin S, Carvalho EJ de, Minghim R. Active learning with visualization for text data [Internet]. Proceedings. 2017 ;Available from: http://dx.doi.org/10.1145/3038462.3038469

    Referências citadas na obra
    Shilpa Arora, Eric Nyberg, and Carolyn P Rosé. 2009. Estimating annotation cost for active learning in a multi-annotator environment. In Proceedings of the NAACL HLT 2009 Workshop on Active Learning for Natural Language Processing. Association for Computational Linguistics, 18--26.
    John Blitzer, Mark Dredze, Fernando Pereira, and others. 2007. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, Vol. 7. 440--447.
    Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents. IEEE transactions on visualization and computer graphics 17, 12 (2011), 2301--2309.
    Michael Brooks, Saleema Amershi, Bongshin Lee, Steven M Drucker, Ashish Kapoor, and Patrice Simard. 2015. FeatureInsight: Visual support for error-driven feature ideation in text classification. In Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on. IEEE, 105--112.
    Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. 2012. Visual classifier training for text document retrieval. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2839--2848.
    Hongsen Liao, Li Chen, Yibo Song, and Hao Ming. 2015. Visualization Based Active Learning for Video Annotation. IEEE Transactions on Multimedia (2015).
    Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9, Nov (2008), 2579--2605.
    Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
    Kamal Nigam, Andrew McCallum, Sebastian Thrun, Tom Mitchell, and others. 1998. Learning to classify text from labeled and unlabeled documents. AAAI/IAAI 792 (1998).
    Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical Report 1648. University of Wisconsin-Madison.
    Burr Settles. 2011. Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 1467--1478.
    Vladimir Naumovich Vapnik and Samuel Kotz. 1982. Estimation of dependences based on empirical data. Vol. 40. Springer-Verlag New York.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020