Topological classification of simple Morse Bott functions on surfaces (2016)
- Authors:
- Autor USP: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC
- Unidade: ICMC
- DOI: 10.1090/conm/675/13590
- Subjects: SISTEMAS DINÂMICOS; TEORIA QUALITATIVA; FUNÇÕES DE MORSE; INVARIANTES
- Keywords: Topological invariant; Morse Bott functions; Reeb graph
- Language: Inglês
- Imprenta:
- Publisher: AMS
- Publisher place: Providence
- Date published: 2016
- Source:
- Título: Contemporary Mathematics
- ISSN: 0271-4132
- Volume/Número/Paginação/Ano: v. 675, p. 165-179, 2016
- Conference titles: International Workshop on Real and Complex Singularities
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid Sofia e OLIVEIRA, Regilene Delazari dos Santos. Topological classification of simple Morse Bott functions on surfaces. Contemporary Mathematics. Providence: AMS. Disponível em: https://doi.org/10.1090/conm/675/13590. Acesso em: 23 jan. 2026. , 2016 -
APA
Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2016). Topological classification of simple Morse Bott functions on surfaces. Contemporary Mathematics. Providence: AMS. doi:10.1090/conm/675/13590 -
NLM
Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Topological classification of simple Morse Bott functions on surfaces [Internet]. Contemporary Mathematics. 2016 ; 675 165-179.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1090/conm/675/13590 -
Vancouver
Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Topological classification of simple Morse Bott functions on surfaces [Internet]. Contemporary Mathematics. 2016 ; 675 165-179.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1090/conm/675/13590 - Quadratic slow-fast systems on the plane
- Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant
- Stability and bifurcation analysis of a four-dimensional economic model
- Family of quadratic differential systems with irreducible invariant hyperbolas: a complete classification in the space R¹²
- On the limit cycle of a Belousov-Zhabotinsky differential systems
- Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes
- Global dynamics of the May-Leonard system with a Darboux invariant
- Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas
- Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3
- On pairs of polynomial planar foliations
Informações sobre o DOI: 10.1090/conm/675/13590 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
