Normal form theory for reversible equivariant vector fields (2016)
- Authors:
- Autor USP: MANOEL, MIRIAM GARCIA - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00574-016-0197-z
- Subjects: SINGULARIDADES; TEORIA DA BIFURCAÇÃO; ANÉIS E ÁLGEBRAS COMUTATIVOS
- Keywords: normal form; reversibility; symmetry; homological operator
- Language: Inglês
- Imprenta:
- Publisher: Springer
- Publisher place: Heidelberg
- Date published: 2016
- Source:
- Título do periódico: Bulletin of the Brazilian Mathematical Society
- ISSN: 1678-7544
- Volume/Número/Paginação/Ano: v. 47, n. 3, p. 935-954, Sept. 2016
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BAPTISTELLI, P. H; MANOEL, Miriam Garcia; ZELI, Iris O. Normal form theory for reversible equivariant vector fields. Bulletin of the Brazilian Mathematical Society, Heidelberg, Springer, v. 47, n. 3, p. 935-954, 2016. Disponível em: < http://dx.doi.org/10.1007/s00574-016-0197-z > DOI: 10.1007/s00574-016-0197-z. -
APA
Baptistelli, P. H., Manoel, M. G., & Zeli, I. O. (2016). Normal form theory for reversible equivariant vector fields. Bulletin of the Brazilian Mathematical Society, 47( 3), 935-954. doi:10.1007/s00574-016-0197-z -
NLM
Baptistelli PH, Manoel MG, Zeli IO. Normal form theory for reversible equivariant vector fields [Internet]. Bulletin of the Brazilian Mathematical Society. 2016 ; 47( 3): 935-954.Available from: http://dx.doi.org/10.1007/s00574-016-0197-z -
Vancouver
Baptistelli PH, Manoel MG, Zeli IO. Normal form theory for reversible equivariant vector fields [Internet]. Bulletin of the Brazilian Mathematical Society. 2016 ; 47( 3): 935-954.Available from: http://dx.doi.org/10.1007/s00574-016-0197-z - Recognition of symmetries in reversible maps
- A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions
- Normal forms of bireversible vector fields
- Real and complex singularities
- Simetrias e simetrias relativas em singularidades e sistemas dinâmicos
- The 'sigma'-isotypic decomposition and the 'sigma'-index of reversible-equivariant systems
- Gradient systems on coupled cell networks
- The classification of reversible-equivariant steady-state bifurcations on self-dual spaces
- 'D IND.N'-simetria em bifurcacao de pontos estacionarios
- Invariant theory for the Lorentz group on the Minkowski space
Informações sobre o DOI: 10.1007/s00574-016-0197-z (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
F. Antoneli, P.H. Baptistelli, A.P.S. Dias and M.G. Manoel. Invariant theory and reversible equivariant vector fields. Journal of Pure and Applied Algebra, 213 (2009), 649–663. |
---|
V.I. Arnold. Critical points of smooth functions and their normal forms. Russ. Math. Surv., 30(5) (1975), 1–75. |
P.H. Baptistelli and M.G. Manoel. The σ-isotypic decomposition and the s-index of reversible equivariant systems. Topology and its Applications, 159 (2011), 389–396. |
P.H. Baptistelli and M.G. Manoel. Invariants and relative invariants under compact Lie groups. Journal of Pure and Applied Algebra, 217 (2013), 2213–2220. |
G.D. Birkhoff. Dynamical Systems. A.M.S. Coll. Publication IX, New York (1927). |
G.R. Belitskii. C∞-normal forms of local vector fields. Symmetry and perturbation theory. Acta Appl. Math., 70 (2002), 23–41. |
T. Bröcker and T. Dieck. Representations of compact Lie groups. Graduate Texts inMathematics 98, Springer-Verlag, Berlin-Heidelberg, New York (1995). |
C.A. Buzzi, L.A. Roberto and M.A. Teixeira. Branching of periodic orbits in reversibleHamiltonian systems. Real and complex singularities, London Math. Soc. Lecture Note Ser., 380 Cambridge Univ. Press, Cambridge, 4670, (2010). |
S.N. Chow, C. Li and D. Wang. Normal forms and bifurcation of planar vector fields. Cambridge University-Press (1994). |
H. Dulac. Solution d’un système d’équations différentielles dans le voisinage de valeurs singulières Bull. Soc. Math. Fr., 40 (1912), 324–383. |
C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet and G. Iooss. A simple global characterization for normal forms of singular vector fields. Physica 29D (1987), 95–127. |
M. Golubitsky, I. Stewart and D. Schaeffer. Singularities and Groups in Bifurcation Theory, Vol. II, Appl. Math. Sci., 69, Springer-Verlag, New York (1985). |
J.S.W. Lamb and I. Melbourne. Normal form theory for relative equilibria and relative periodic solutions. Trans. Amer. Math. Soc., 359(9) (2007), 4537–4556. |
M.F.S. Lima and M.A. Teixeira. Families of periodic orbits in resonant reversible systems. Bull. Braz. Math. Soc., New Series 40(4) (2009), 511–537. |
M. Manoel and I.O. Zeli. Normal forms of vector fields that anti-commute with a pair of involutions. In preparation (2014). |
R.M. Martins and M.A. Teixeira. Reversible equivariant systems and matricial equations, An. Acad. Bras. Ciênc., 83(2) (2011), 375–390. |
A.C. Mereu and M.A. Teixeira. Reversibility and branching of periodic orbits. Discrete Contin. Dyn. Sys., 3 (2013), 1177–1199. |
H. Poincaré. 1879. Thesis; also Oeuvres I, 59-129, Gauthier Villars, Paris, 1928. |
F. Takens. Normal forms for certain singularities of vector fields. An. Inst. Fourier, 23(2) (1973), 163–195. |