A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions (2000)
- Authors:
- Autor USP: MANOEL, MIRIAM GARCIA - ICMC
- Unidade: ICMC
- Assunto: SINGULARIDADES
- Language: Inglês
- Source:
- Título: Physica Scripta
- ISSN: 0031-8949
- Volume/Número/Paginação/Ano: v. 61, p. 129-132, 2000
-
ABNT
MANOEL, Miriam Garcia e BARBOSA, José Camilo. A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions. Physica Scripta, v. 61, p. 129-132, 2000Tradução . . Acesso em: 26 jan. 2026. -
APA
Manoel, M. G., & Barbosa, J. C. (2000). A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions. Physica Scripta, 61, 129-132. -
NLM
Manoel MG, Barbosa JC. A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions. Physica Scripta. 2000 ; 61 129-132.[citado 2026 jan. 26 ] -
Vancouver
Manoel MG, Barbosa JC. A mathematical model for the spectrum of a two-dimensional Schrödinger equation with magnetic field under Dirichlet boundary conditions. Physica Scripta. 2000 ; 61 129-132.[citado 2026 jan. 26 ] - 'D IND.N'-simetria em bifurcacao de pontos estacionarios
- Degenerate bifurcations with "ZIND. 2"soma direta "ZIND. 2"-symmetry
- The classification of reversible-equivariant steady-state bifurcations of self-dual spaces
- Divergent diagrams of folds and simultaneous conjugacy of involutions
- Invariant theory and reversible-equivariant vector fields
- Complete transversals of symmetric vector fields
- Normal form theory for reversible equivariant vector fields
- Uma introdução aos sistemas dinâmicos e bifurcações aplicados ao modelo neuronal de Hodgkin-Huxley
- Gradient and Hamiltonian coupled systems on undirected networks
- Invariant theory for the Lorentz group on the Minkowski space
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
