Effective insect recognition using a stacked autoencoder with maximum correntropy criterion (2015)
- Authors:
- Autor USP: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC
- Unidade: ICMC
- DOI: 10.1109/IJCNN.2015.7280418
- Subjects: INTELIGÊNCIA ARTIFICIAL; COMPUTAÇÃO APLICADA; ENTOMOLOGIA
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: International Joint Conference on Neural Network - IJCNN
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
QI, Yu et al. Effective insect recognition using a stacked autoencoder with maximum correntropy criterion. 2015, Anais.. Piscataway: IEEE, 2015. Disponível em: https://doi.org/10.1109/IJCNN.2015.7280418. Acesso em: 28 jan. 2026. -
APA
Qi, Y., Cinar, G. T., Souza, V. M. A., Batista, G. E. de A. P. A., Wang, Y., & Principe, J. C. (2015). Effective insect recognition using a stacked autoencoder with maximum correntropy criterion. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN.2015.7280418 -
NLM
Qi Y, Cinar GT, Souza VMA, Batista GE de APA, Wang Y, Principe JC. Effective insect recognition using a stacked autoencoder with maximum correntropy criterion [Internet]. Proceedings. 2015 ;[citado 2026 jan. 28 ] Available from: https://doi.org/10.1109/IJCNN.2015.7280418 -
Vancouver
Qi Y, Cinar GT, Souza VMA, Batista GE de APA, Wang Y, Principe JC. Effective insect recognition using a stacked autoencoder with maximum correntropy criterion [Internet]. Proceedings. 2015 ;[citado 2026 jan. 28 ] Available from: https://doi.org/10.1109/IJCNN.2015.7280418 - Evaluating ranking composition methods for multi-objective optimization of knowledge rules
- Quantification in data streams: initial results
- Flying insect classification with inexpensive sensors
- Flying insect detection and classification with inexpensive sensors
- Searching and mining trillions of time series subsequences under dynamic time warping
- Descoberta de regras de conhecimento utilizando computação evolutiva multi-objetivo
- A study of the use of complexity measures in the similarity search process adopted by kNN algorithm for time series prediction
- Discovering knowledge rules with multi-objective evolutionary computing
- Time series transductive classification on imbalanced data sets: an experimental study
- Counting and classifying mosquitoes from a distance with ultra cheap sensors
Informações sobre o DOI: 10.1109/IJCNN.2015.7280418 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas