Dynamics of an isolated, viscoelastic, self-gravitating body (2015)
- Authors:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1007/s10569-015-9620-9
- Subjects: MECÂNICA DOS FLUÍDOS; EQUAÇÕES DIFERENCIAIS; MECÂNICA CELESTE
- Language: Inglês
- Imprenta:
- Source:
- Título: Celestial Mechanics and Dynamical Astronomy
- ISSN: 1572-9478
- Volume/Número/Paginação/Ano: v. 122, n. 4, p. 303-332, Aug. 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RAGAZZO, Clodoaldo Grotta e SANTOS, Lucas Ruiz dos. Dynamics of an isolated, viscoelastic, self-gravitating body. Celestial Mechanics and Dynamical Astronomy, v. 122, n. 4, p. 303-332, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10569-015-9620-9. Acesso em: 25 jan. 2026. -
APA
Ragazzo, C. G., & Santos, L. R. dos. (2015). Dynamics of an isolated, viscoelastic, self-gravitating body. Celestial Mechanics and Dynamical Astronomy, 122( 4), 303-332. doi:10.1007/s10569-015-9620-9 -
NLM
Ragazzo CG, Santos LR dos. Dynamics of an isolated, viscoelastic, self-gravitating body [Internet]. Celestial Mechanics and Dynamical Astronomy. 2015 ; 122( 4): 303-332.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10569-015-9620-9 -
Vancouver
Ragazzo CG, Santos LR dos. Dynamics of an isolated, viscoelastic, self-gravitating body [Internet]. Celestial Mechanics and Dynamical Astronomy. 2015 ; 122( 4): 303-332.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10569-015-9620-9 - Chaos and integrability in a nonlinear wave equation
- On the motion of two-dimensional vortices with mass
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the dynamics near resonant equilibria
- Critical number in scattering and escaping problems in classical mechanics
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
- Scalar Autonomous Second Order Ordinary Differential Equations
- Dynamic mean flow and small-scale interaction through topographic stress
- Stability of homoclinic orbits and diffusion in phase space
- On the stability of some periodic orbits of a new type for twist maps
Informações sobre o DOI: 10.1007/s10569-015-9620-9 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
