Hand-raising gesture detection with Lienhart-Maydt method in videoconference and distance learning (2013)
- Authors:
- Autor USP: PONTI JUNIOR, MOACIR PEREIRA - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-41827-3_64
- Subjects: COMPUTAÇÃO GRÁFICA; PROCESSAMENTO DE IMAGENS; INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Springer-Verlag
- Publisher place: Berlin
- Date published: 2013
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 8259, p. 512-519, 2013
- Conference titles: Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - CIARP
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
NAZARÉ, Tiago Santana de e PONTI, Moacir Antonelli. Hand-raising gesture detection with Lienhart-Maydt method in videoconference and distance learning. Lecture Notes in Computer Science. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-41827-3_64. Acesso em: 12 fev. 2026. , 2013 -
APA
Nazaré, T. S. de, & Ponti, M. A. (2013). Hand-raising gesture detection with Lienhart-Maydt method in videoconference and distance learning. Lecture Notes in Computer Science. Berlin: Springer-Verlag. doi:10.1007/978-3-642-41827-3_64 -
NLM
Nazaré TS de, Ponti MA. Hand-raising gesture detection with Lienhart-Maydt method in videoconference and distance learning [Internet]. Lecture Notes in Computer Science. 2013 ; 8259 512-519.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-642-41827-3_64 -
Vancouver
Nazaré TS de, Ponti MA. Hand-raising gesture detection with Lienhart-Maydt method in videoconference and distance learning [Internet]. Lecture Notes in Computer Science. 2013 ; 8259 512-519.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-642-41827-3_64 - Mobile inertial sensors for fall risk screening and prediction
- A decision cognizant Kullback-Leibler divergence
- Deep manifold alignment for mid-grain sketch based image retrieval
- Como funciona o deep learning
- Sketching out the details: sketch-based image retrieval using convolutional neural networks with multi-stage regression
- Generalization of feature embeddings transferred from different video anomaly detection domains
- An incremental linear-time learning algorithm for the optimum-path forest classifier
- Relevance image sampling from collection using importance selection on randomized optimum-path trees
- Compact descriptors for sketch-based image retrieval using a triplet loss convolutional neural network
- Better than counting seconds: identifying fallers among healthy elderly using fusion of accelerometer features and dual-task timed up and go
Informações sobre o DOI: 10.1007/978-3-642-41827-3_64 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
