A note on the uniqueness of solutions for the Yamabe problem (2012)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1090/S0002-9939-2012-11284-5
- Assunto: GEOMETRIA DIFERENCIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2012
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 140, n. 12, p. 4351-4357, 2012
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
LIMA, Levi Lopes de e PICCIONE, Paolo e ZEDDA, Michela. A note on the uniqueness of solutions for the Yamabe problem. Proceedings of the American Mathematical Society, v. 140, n. 12, p. 4351-4357, 2012Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2012-11284-5. Acesso em: 09 jan. 2026. -
APA
Lima, L. L. de, Piccione, P., & Zedda, M. (2012). A note on the uniqueness of solutions for the Yamabe problem. Proceedings of the American Mathematical Society, 140( 12), 4351-4357. doi:10.1090/S0002-9939-2012-11284-5 -
NLM
Lima LL de, Piccione P, Zedda M. A note on the uniqueness of solutions for the Yamabe problem [Internet]. Proceedings of the American Mathematical Society. 2012 ; 140( 12): 4351-4357.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11284-5 -
Vancouver
Lima LL de, Piccione P, Zedda M. A note on the uniqueness of solutions for the Yamabe problem [Internet]. Proceedings of the American Mathematical Society. 2012 ; 140( 12): 4351-4357.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1090/S0002-9939-2012-11284-5 - Multiple brake orbits in m-dimensional disks
- On the normal exponential map in singular conformal metrics
- Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index
- Associated family of G-structure preserving minimal immersions in semi-Riemannian manifolds
- Examples with minimal number of brake orbits and homoclinics in annular potential regions
- Actions of discrete groups on stationary Lorentz manifolds
- Maslov index and Morse theory for the relativistic Lorentz force equation
- On the number of solutions for the two-point boundary value problem on Riemannian manifolds
- Maximally-warped metrics with harmonic curvature
- On the Lie group structure of pseudo-Finsler isometries
Informações sobre o DOI: 10.1090/S0002-9939-2012-11284-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
