Accelerometers data interoperability: easing interactive applications development (2012)
- Authors:
- USP affiliated authors: MANZATO, MARCELO GARCIA - ICMC ; GOULARTE, RUDINEI - ICMC
- Unidade: ICMC
- DOI: 10.1145/2382636.2382702
- Subjects: MULTIMÍDIA INTERATIVA; WORLD WIDE WEB
- Language: Inglês
- Imprenta:
- ISBN: 9781450317061
- Source:
- Título: Proceedings
- Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CARVALHO, Jorge R e MANZATO, Marcelo Garcia e GOULARTE, Rudinei. Accelerometers data interoperability: easing interactive applications development. 2012, Anais.. New York: ACM, 2012. Disponível em: https://doi.org/10.1145/2382636.2382702. Acesso em: 20 jan. 2026. -
APA
Carvalho, J. R., Manzato, M. G., & Goularte, R. (2012). Accelerometers data interoperability: easing interactive applications development. In Proceedings. New York: ACM. doi:10.1145/2382636.2382702 -
NLM
Carvalho JR, Manzato MG, Goularte R. Accelerometers data interoperability: easing interactive applications development [Internet]. Proceedings. 2012 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1145/2382636.2382702 -
Vancouver
Carvalho JR, Manzato MG, Goularte R. Accelerometers data interoperability: easing interactive applications development [Internet]. Proceedings. 2012 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1145/2382636.2382702 - A conceptual architecture with trust consensus to enhance group recommendations
- A multimedia recommender system based on enriched user profiles
- Evaluating the impact of demographic data on a hybrid recommender model
- Hybrid recommenders: incorporating metadata awareness into latent factor models
- Introducing the concept of "always–welcome recommendations"
- Personalized collaborative filtering: a neighborhood model based on contextual constraints
- Leveraging hybrid recommenders with multifaceted implicit feedback
- Automatic annotation of tagged content using predefined semantic concepts
- CoBaR: confidence-based recommender
- Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization
Informações sobre o DOI: 10.1145/2382636.2382702 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
