Coefficient modules and rees polynomials of arbitrary modules (2012)
- Authors:
- Autor USP: PÉREZ, VICTOR HUGO JORGE - ICMC
- Unidade: ICMC
- Assunto: SINGULARIDADES
- Language: Inglês
- Imprenta:
- Source:
- Título: International Journal of Algebra
- ISSN: 1312-7594
- Volume/Número/Paginação/Ano: v. 6, n. 9, p. 447-455, 2012
-
ABNT
JORGE PÉREZ, Victor Hugo e SILVA, M. D. Coefficient modules and rees polynomials of arbitrary modules. International Journal of Algebra, v. 6, n. 9, p. 447-455, 2012Tradução . . Disponível em: http://www.m-hikari.com/ija/ija-2012/ija-9-12-2012/perezIJA9-12-2012.pdf. Acesso em: 12 jan. 2026. -
APA
Jorge Pérez, V. H., & Silva, M. D. (2012). Coefficient modules and rees polynomials of arbitrary modules. International Journal of Algebra, 6( 9), 447-455. Recuperado de http://www.m-hikari.com/ija/ija-2012/ija-9-12-2012/perezIJA9-12-2012.pdf -
NLM
Jorge Pérez VH, Silva MD. Coefficient modules and rees polynomials of arbitrary modules [Internet]. International Journal of Algebra. 2012 ; 6( 9): 447-455.[citado 2026 jan. 12 ] Available from: http://www.m-hikari.com/ija/ija-2012/ija-9-12-2012/perezIJA9-12-2012.pdf -
Vancouver
Jorge Pérez VH, Silva MD. Coefficient modules and rees polynomials of arbitrary modules [Internet]. International Journal of Algebra. 2012 ; 6( 9): 447-455.[citado 2026 jan. 12 ] Available from: http://www.m-hikari.com/ija/ija-2012/ija-9-12-2012/perezIJA9-12-2012.pdf - Gluing of analytic space germs, invariants and Watanabe's conjecture
- On shifted principles of generalized local cohomology modules
- Generalized local duality, canonical modules, and prescribed bound on projective dimension
- Vanishing of Tor over fiber products
- When does the canonical module of a module have finite injective dimension?
- Commutative Algebra: 150 Years with Roger and Sylvia Wiegand
- Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module
- Finite determinacy and whitney equisingularity of map germs from 'C pot.n' to 'C pot.2n-1'
- Mixed multiplicities for arbitrary ideals and generalized buchsbaum-rim multiplicities
- Rees's mixed multiplicity theorem for modules
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
