Automatic generation of Wrapper code for video processing functions (2011)
- Authors:
- USP affiliated authors: dantas, daniel - ; BARRERA, JUNIOR - IME
- Unidade: IME
- DOI: 10.21528/LNLM-vol9-no2-art5
- Assunto: PROCESSAMENTO DE IMAGENS
- Keywords: Image processing; video processing; GPU; OpenGL; real time
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Rio de Janeiro
- Date published: 2011
- Source:
- Título: Learning and Nonlinear Models (L&NLM)
- ISSN: 1676-2789
- Volume/Número/Paginação/Ano: v. 9, n. 2, p. 134-137, 2011
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
DANTAS, Daniel Oliveira e BARRERA, Júnior. Automatic generation of Wrapper code for video processing functions. Learning and Nonlinear Models (L&NLM), v. 9, n. 2, p. 134-137, 2011Tradução . . Disponível em: https://doi.org/10.21528/LNLM-vol9-no2-art5. Acesso em: 11 jan. 2026. -
APA
Dantas, D. O., & Barrera, J. (2011). Automatic generation of Wrapper code for video processing functions. Learning and Nonlinear Models (L&NLM), 9( 2), 134-137. doi:10.21528/LNLM-vol9-no2-art5 -
NLM
Dantas DO, Barrera J. Automatic generation of Wrapper code for video processing functions [Internet]. Learning and Nonlinear Models (L&NLM). 2011 ; 9( 2): 134-137.[citado 2026 jan. 11 ] Available from: https://doi.org/10.21528/LNLM-vol9-no2-art5 -
Vancouver
Dantas DO, Barrera J. Automatic generation of Wrapper code for video processing functions [Internet]. Learning and Nonlinear Models (L&NLM). 2011 ; 9( 2): 134-137.[citado 2026 jan. 11 ] Available from: https://doi.org/10.21528/LNLM-vol9-no2-art5 - Journal of Electronic Imaging: Special section on nonlinear image processing
- Mathematical morphology and its applications to signal and image processing
- Bases da morfologia matemática para análise de imagens binárias
- Automatic programming of binary morphological machines by design of statistically optimal operators in the context of computational learning theory
- Color image gradients for morphological segmentation
- Design of large-window binary filters via iteration
- Nonlinear filters in genomic control
- Translation invariant transformations of discrete Random sets
- Design of optimal binary filters under joint multiresolution-envelope constraint
- Computational learning applied to image sequence segmentation
Informações sobre o DOI: 10.21528/LNLM-vol9-no2-art5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas