Community detection approach for cluster formation in wireless sensor networks (2011)
- Authors:
- USP affiliated authors: LOPES, ALNEU DE ANDRADE - ICMC ; LIANG, ZHAO - ICMC
- School: ICMC
- Subjects: INTELIGÊNCIA ARTIFICIAL; COMPUTAÇÃO GRÁFICA; PROCESSAMENTO DE IMAGENS; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Publisher: SBIC
- Place of publication: Rio de Janeiro
- Date published: 2011
- Source:
- Título do periódico: Anais
- Conference title: Congresso Brasileiro de Inteligência Computacional - CBIC
-
ABNT
FERREIRA, Leonardo N et al. Community detection approach for cluster formation in wireless sensor networks. 2011, Anais.. Rio de Janeiro: SBIC, 2011. . Acesso em: 02 jul. 2022. -
APA
Ferreira, L. N., Pinto, A. R., Lopes, A. de A., & Liang, Z. (2011). Community detection approach for cluster formation in wireless sensor networks. In Anais. Rio de Janeiro: SBIC. -
NLM
Ferreira LN, Pinto AR, Lopes A de A, Liang Z. Community detection approach for cluster formation in wireless sensor networks. Anais. 2011 ;[citado 2022 jul. 02 ] -
Vancouver
Ferreira LN, Pinto AR, Lopes A de A, Liang Z. Community detection approach for cluster formation in wireless sensor networks. Anais. 2011 ;[citado 2022 jul. 02 ] - A nonparametric classification method based on K-associated graphs
- Online classifier based on the optimal K-associated network
- Regular graph construction for semi-supervised learning
- Streaming data classification with the 'capa'-associated graph
- Classification based on the optimal K-associated network
- An incremental learning algorithm based on the k-associated graph for non-stationary data classification
- Partially labeled data stream classification with the semi-supervised 'capa'-associated graph
- Classificação de alto nível utilizando grafo k-associados ótimo
- Network-based data classification: combining k-associated optimal graphs and high-level prediction
- Multilevel coarsening for interactive visualization of large bipartite networks
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas