Upper semicontinuity of attractors for a parabolic problem on a thin domain with highly oscillating boundary (2009)
- Authors:
- USP affiliated authors: PEREIRA, MARCONE CORRÊA - EACH ; CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidades: EACH; ICMC
- Assunto: FUNÇÕES ESPECIAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Resumos dos trabalhos
- Conference titles: Encontro Nacional de Análise Matemática e Aplicações - ENAMA
-
ABNT
ARRIETA, José M et al. Upper semicontinuity of attractors for a parabolic problem on a thin domain with highly oscillating boundary. 2009, Anais.. Maringá: UEM, 2009. . Acesso em: 15 fev. 2026. -
APA
Arrieta, J. M., Carvalho, A. N. de, Pereira, M. C., & Silva, R. P. (2009). Upper semicontinuity of attractors for a parabolic problem on a thin domain with highly oscillating boundary. In Resumos dos trabalhos. Maringá: UEM. -
NLM
Arrieta JM, Carvalho AN de, Pereira MC, Silva RP. Upper semicontinuity of attractors for a parabolic problem on a thin domain with highly oscillating boundary. Resumos dos trabalhos. 2009 ;[citado 2026 fev. 15 ] -
Vancouver
Arrieta JM, Carvalho AN de, Pereira MC, Silva RP. Upper semicontinuity of attractors for a parabolic problem on a thin domain with highly oscillating boundary. Resumos dos trabalhos. 2009 ;[citado 2026 fev. 15 ] - Semilinear parabolic problems in thin domains with a highly oscillatory boundary
- Aplicações do teorema da transversalidade à genericidade em alguns problemas de contorno elípticos
- The p-Laplacian in thin channels with locally periodic roughness and different scales
- Perturbação de contorno do problema de Dirichlet para o Bilaplaciano
- Nonlocal problems in perforated domains
- The Neumann problem in thin domains with very highly oscillatory boundaries
- Semilinear elliptic problems in oscillating thin domains
- Remarks on the p-Laplacian on thin domains
- Generic simplicity of the eigenvalues for a supported plate equation
- Generic hyperbolicity of stationary solutions for a reaction–diffusion system
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
