Does background intensity estimation influence the iterative restoration of microscope images? (2010)
- Authors:
- Autor USP: PONTI JUNIOR, MOACIR PEREIRA - ICMC
- Unidade: ICMC
- Subjects: COMPUTAÇÃO GRÁFICA; PROCESSAMENTO DE IMAGENS; INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2010
- Source:
- Título: Proceedings
- Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI
-
ABNT
PONTI, Moacir Antonelli e MASCARENHAS, Nelson Delfino D'avila. Does background intensity estimation influence the iterative restoration of microscope images? 2010, Anais.. Porto Alegre: SBC, 2010. . Acesso em: 26 dez. 2025. -
APA
Ponti, M. A., & Mascarenhas, N. D. D. 'avila. (2010). Does background intensity estimation influence the iterative restoration of microscope images? In Proceedings. Porto Alegre: SBC. -
NLM
Ponti MA, Mascarenhas NDD'avila. Does background intensity estimation influence the iterative restoration of microscope images? Proceedings. 2010 ;[citado 2025 dez. 26 ] -
Vancouver
Ponti MA, Mascarenhas NDD'avila. Does background intensity estimation influence the iterative restoration of microscope images? Proceedings. 2010 ;[citado 2025 dez. 26 ] - One-class to multi-class model update using the class-incremental optimum-path forest classifier
- Extração de atributos visuais compactos para reconhecimento de padrões visuais em dispositivos móveis
- Deep convolutional neural networks and noisy images
- Three-dimensional noisy image restoration using filtered extrapolation and deconvolution
- Combining classifiers: from the creation of ensembles to the decision fusion
- Partially supervised anomaly detection using convex hulls on a 2D parameter space
- Robust feature spaces from pre-trained deep network layers for skin lesion classification
- Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections
- Better than counting seconds: identifying fallers among healthy elderly using fusion of accelerometer features and dual-task timed up and go
- Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
