Using sentinels to detect intersections of convex and nonconvex polygons (2010)
- Authors:
- USP affiliated authors: MASCARENHAS, WALTER FIGUEIREDO - IME ; BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1590/S1807-03022010000200008
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Language: Inglês
- Imprenta:
- Publisher place: São Carlos
- Date published: 2010
- Source:
- Título: Computational and Applied Mathematics
- ISSN: 0101-8205
- Volume/Número/Paginação/Ano: v. 29, n. 2, p. 247-267, 2010
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MASCARENHAS, Walter Figueiredo e BIRGIN, Ernesto Julian Goldberg. Using sentinels to detect intersections of convex and nonconvex polygons. Computational and Applied Mathematics, v. 29, n. 2, p. 247-267, 2010Tradução . . Disponível em: https://doi.org/10.1590/S1807-03022010000200008. Acesso em: 23 jan. 2026. -
APA
Mascarenhas, W. F., & Birgin, E. J. G. (2010). Using sentinels to detect intersections of convex and nonconvex polygons. Computational and Applied Mathematics, 29( 2), 247-267. doi:10.1590/S1807-03022010000200008 -
NLM
Mascarenhas WF, Birgin EJG. Using sentinels to detect intersections of convex and nonconvex polygons [Internet]. Computational and Applied Mathematics. 2010 ; 29( 2): 247-267.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1590/S1807-03022010000200008 -
Vancouver
Mascarenhas WF, Birgin EJG. Using sentinels to detect intersections of convex and nonconvex polygons [Internet]. Computational and Applied Mathematics. 2010 ; 29( 2): 247-267.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1590/S1807-03022010000200008 - Method of sentinels for packing items within arbitrary convex regions
- The stability of barycentric interpolation at the Chebyshev points of the second kind
- Global estimation of hidden Markov model parameters via interval arithmetic
- A simple canonical form for nonlinear programming problems and its use
- The effects of rounding errors in the nodes on barycentric interpolation
- The stability of extended Floater-Hormann interpolants
- Newton's iterates can converge to non-stationary points
- On the divergence of line search methods
- The regular points of simple functions
- A Mountain Pass Lemma and its implications regarding the uniqueness of constrained minimizers
Informações sobre o DOI: 10.1590/S1807-03022010000200008 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
