Addendum to "universal covering of driftless control systems" (2009)
- Autor:
- Autor USP: KIZIL, EYÜP - ICMC
- Unidade: ICMC
- Subjects: SEMIGRUPOS DE OPERADORES LINEARES; TEORIA GEOMÉTRICA DOS GRUPOS
- Language: Inglês
- Imprenta:
- Publisher place: Netherlands
- Date published: 2009
- Source:
- Título: Journal of Dynamical and Control Systems
- ISSN: 1079-2724
- Volume/Número/Paginação/Ano: v. 15, n. 4, p. 445-448
-
ABNT
KIZIL, Eyüp. Addendum to "universal covering of driftless control systems". Journal of Dynamical and Control Systems, v. 15, n. 4, p. 445-448, 2009Tradução . . Disponível em: http://www.springerlink.com/content/wg37580653155351/fulltext.pdf. Acesso em: 09 jan. 2026. -
APA
Kizil, E. (2009). Addendum to "universal covering of driftless control systems". Journal of Dynamical and Control Systems, 15( 4), 445-448. Recuperado de http://www.springerlink.com/content/wg37580653155351/fulltext.pdf -
NLM
Kizil E. Addendum to "universal covering of driftless control systems" [Internet]. Journal of Dynamical and Control Systems. 2009 ; 15( 4): 445-448.[citado 2026 jan. 09 ] Available from: http://www.springerlink.com/content/wg37580653155351/fulltext.pdf -
Vancouver
Kizil E. Addendum to "universal covering of driftless control systems" [Internet]. Journal of Dynamical and Control Systems. 2009 ; 15( 4): 445-448.[citado 2026 jan. 09 ] Available from: http://www.springerlink.com/content/wg37580653155351/fulltext.pdf - Homotopy path spaces for families of admissible paths
- About the solutions of linear control systems on Lie groups
- Null controllability on Lie groups
- Covering space for monotonic homotopy of trajectories of control systems
- Universal covering of driftless control systems
- Addendum to "universal covering of driftless control systems"
- The covering semigroup of invariant control systems on Lie groups
- On a subsemigroup of the universal covering of Lie semigroups
- Regular trajectories of young systems
- Monotonic homotopy for trajectories of young systems
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas