A space C(K) where all nontrivial complemented subspaces have big densities (2005)
- Autor:
- Autor USP: KOSZMIDER, PIOTR BOLESLAW - IME
- Unidade: IME
- DOI: 10.4064/sm168-2-2
- Assunto: ESPAÇOS DE BANACH
- Language: Inglês
- Imprenta:
- Source:
- Título: Studia Mathematica
- ISSN: 0039-3223
- Volume/Número/Paginação/Ano: v. 168, n. 2, p. 109-127, 2005
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
KOSZMIDER, Piotr Boleslaw. A space C(K) where all nontrivial complemented subspaces have big densities. Studia Mathematica, v. 168, n. 2, p. 109-127, 2005Tradução . . Disponível em: https://doi.org/10.4064/sm168-2-2. Acesso em: 20 jan. 2026. -
APA
Koszmider, P. B. (2005). A space C(K) where all nontrivial complemented subspaces have big densities. Studia Mathematica, 168( 2), 109-127. doi:10.4064/sm168-2-2 -
NLM
Koszmider PB. A space C(K) where all nontrivial complemented subspaces have big densities [Internet]. Studia Mathematica. 2005 ; 168( 2): 109-127.[citado 2026 jan. 20 ] Available from: https://doi.org/10.4064/sm168-2-2 -
Vancouver
Koszmider PB. A space C(K) where all nontrivial complemented subspaces have big densities [Internet]. Studia Mathematica. 2005 ; 168( 2): 109-127.[citado 2026 jan. 20 ] Available from: https://doi.org/10.4064/sm168-2-2 - The interplay between compact spaces and the Banach spaces of their continuous functions
- On decompositions of Banach spaces of continuous functions on Mrowka's spaces
- Models as side conditions
- On decompositions of Banach spaces of continuous functions on Mrówka´s spaces
- On strong chains of uncountable functions
- Forcing minimal extensions of Boolean algebras
- Applications of P-functions
- Projections in weakly compactly generated Banach spaces and Chang's conjecture
- On the existence of strong chains in ´p OMEGA IND. 1´/fin
- Banach spaces of continuous functions with few operators
Informações sobre o DOI: 10.4064/sm168-2-2 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas