On sets of integers without arithmetic progressions (2000)
- Authors:
- USP affiliated authors: GARCIA, MANUEL VALENTIM DE PERA - IME ; TAL, FABIO ARMANDO - IME
- Unidade: IME
- Assunto: TEORIA DOS NÚMEROS
- Language: Inglês
- Imprenta:
-
ABNT
GARCIA, Manuel Valentim de Pera e TAL, Fábio Armando. On sets of integers without arithmetic progressions. . São Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/85082b14-00b3-413a-9c5f-f22e58e12798/1406985.pdf. Acesso em: 09 jan. 2026. , 2000 -
APA
Garcia, M. V. de P., & Tal, F. A. (2000). On sets of integers without arithmetic progressions. São Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/85082b14-00b3-413a-9c5f-f22e58e12798/1406985.pdf -
NLM
Garcia MV de P, Tal FA. On sets of integers without arithmetic progressions [Internet]. 2000 ;[citado 2026 jan. 09 ] Available from: https://repositorio.usp.br/directbitstream/85082b14-00b3-413a-9c5f-f22e58e12798/1406985.pdf -
Vancouver
Garcia MV de P, Tal FA. On sets of integers without arithmetic progressions [Internet]. 2000 ;[citado 2026 jan. 09 ] Available from: https://repositorio.usp.br/directbitstream/85082b14-00b3-413a-9c5f-f22e58e12798/1406985.pdf - The influence of the kinetic energy in equilibrium of hamiltonian systems
- Instability of equilibrium points of some Lagrangian systems
- Stability of equilibrium of conservative systems with two degrees of freedom
- The influence of the kinetic energy in equilibrium of hamiltonian systems
- Sobre o problema de Collatz
- A note on 3n+1 generalized problem
- A note on the generalized 3n + 1 problem
- Instability of equilibrium points of some Lagrangian systems
- Stability of equilibrium of conservative systems with two degrees of freedom
- Decidibilidade finita e decidibilidade de ordem p
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1406985.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
