





2> nl_ﬁ: (see [B]). But the first conjecture was positively answered in
1975 by Szmerédi in [S], using purely combinatorial methods. Shortly after
that, Furstenberg achieved that same result by means of ergodic theory.
Following this, Erd6s conjectured (see [E]) that Jim n_(lc‘)_gw =0 for
every k € N and every 8 € R*. He also proposed that if (b,) is 2 grow-
ing sequence of positive integers, no k of those are in progression, then

> ;1— < 0o. Both these statements remain unproved. It’s worth noticing
neN "
that a positive answer to any of this conjectures would imply that there are

arbitrarily large arithmetic progressions among the prime numbers, a very
old problem of number theory. In the same article, Erdds proposes some
other problems related with this, in particular, if is it true that exists, for
every > 0 and k € N*, a natural ng such that, if (b,) is a sequence of in-
tegers without arithmetic progressions of length k and ng < b < by < -,

o0
then 3 & < €7 It’s clear that this implies the first conjecture, and we
n=l

prove that they are equivalent. In fact we show that the first conjecture is
equivalent to four other seemingly stronger statements.

In Section 2 of this work we prove the equivalences and in Section 3 we
show a min-max principle for S3.

2 Some equivalences

We will denote ¥, the class of subsets of N (finite or not) that do not have
k elements in arithmetic progressions, and we will represent by [a..b] the set
{n€Z:a<n<b}.

Remember that, for positive integers, n and k, & > 3, we will denote by
S% = max #B such that B C [1..n] and B € F}, and let a* be the minimum
of {t € N:3B C [1..#], with #B =n and B € F;}. We note that Sk =n.

From this point until the end of this section we will fix a integer k >3.
In this section we will show that the following statement

o0
(i) If (b:) is a sequence in F then Y, i <400
=1
is equivalent to some other seemingly stronger propositions, namely, @) is
equivalent to .

(i) Thereis a L= L(k) such that, for all (b;) € Fi, 3% & < L.
i=1



o0
(iii) The series Y ;1;,- is convergent.
t=1"1

(iv) If € > 0 then there is a ng = ng(kie) € N* such that if (b;) € Fi with
ng < b <by <...then Z&:(E.

=1
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(v) There is a sequence (ci) in Fi such that § E<

. L, for all (b) €
Fr.
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It’s obvious that each one of these assertions implies (i}, but the recipro-
cals are not evident. In [E], for example, Erdds states (iv) asa .. related
problem (with (i)) which seems interesting”.

. . e . m 3 sk s»
Lemma 1 Ifi and j are positive integers and i < j then - < 2=F

Proof: It’s clear that if A € F and £ is an integer then A + £ is in F;. So,
if A is a subset of [a..a + n] and is free of arithmetic progressions of length
k then #A < Sk,

Since ¢ < j there are integers g and r, withg > land 0 < r <i—1such
that j=gqi+r.

Then SF < ¢S* + r < (¢+ 1)S¥ and this shows that

Sk < a’;(q +1)8} < 225k n

Now we will construct a special sequence (1) in F%.
First of all, consider for n € N* a K, C J, = [2(3)"..3"1[ of S
elements, such that K, € F; (this is possible, since #J, = 3").
oo

Now take K = U K, and ordene this set obtaining by this way the
n=1

sequence (1%).
Lemma 2 The sequence (1) i8 in Fi.

Proof: It’s obvious that K,, € F;.

Now, suppose, by contradiction, that K ¢ Fj and take a; < a3 <...<
a; in K such that (8,), 1 < n < k is an arithmetic progression.

Then @) € K,, for some n; and there is a smaller j, 2 < j < n such
that a; & K,,. If j < 3 it’s clear that a; — ) < aj—; — a; and we have a
contradiction.



Then we must have a; € K,,, with n; > n;. from this it’s clear that
M <a;—a < 2(3“2).

So, if a3 € K,,, it’s clear that az — a; > a3 — a3 and we have a contra-
diction.

This implies that a3 € K,, and n3 > n;.

Therefore 3™ < a3 —a; < 2(3™). From this and the previous inequality
for az — a; we see that a3 —ay > a3~ a; and this contradicts the hypothesis
that (a,) is an arithmetic progression. =

Theorem 1 ((i)=>(ii)) If (i) stands then there is a real L = L(k) such that
for all (b)) € Fi we have 3% & < L.
i=1

Proof: From (i) and lemma 2, § & =M< .

Let (&) € F and note that # {b i € N*}n[39.3H[< sk 2(ai) < 25%;.
Then,

®q & 1 &, 25k,
Pi-2 > <32 ®
$=1""  §=0 \b;g[as. 341 * j=0

In the other hand, since # {n;:¢ € N*} N[3/..37+![= % we have

1=§( ) 1)>f:£—§’—1 @

1% 520 \mepamy j=

M=

Ms

1

From (1) and (2) it follows that

3 EIES

255 _ o> 5%
=63 z7ar < 6M. n
=0

Theorem 2 ((i)=> (iii)) If (i) stands then Z o converges.

=1"
Proof: By the same arguments as in the ptevxous demonstration, since
Sk ot = j and a > 3, we have from lemma 1 -7;,- < 2-4- and

oo 2(3%)-1

Ya=Y > <22 )

J=1"3 i=0 ¢=0 %34¢ =0 %ai




Then, by (2) and (3) we obtain § ¥ < 12M. ]
=17
It follows from theorem 1 that if (i) holds the set

1
{o €Rio= ,Z:; 5’ for some sequence (b;) € .7-';;} -

is bounded, then it has a supremum, that we will denote L;.
Theorem 38 ((i)=> (iv)) Suppose that (i) holds and let & > 0, then there is
ang E N* such that if (b;) is a strictly crescent sequence in Fy, and by > ng
then E B <€
i=1
Proof: Let £ > 0 and a sequence (d,) € Fi such that Ly — Z ;1; < %5-
Jj=1
Then, choose ng such that Ly — 3 & <
1=1

Now, for m = 0,1,..., consider the interval I, = [2(3™)dy,..3™dn[

and Km C I, with #Kpmn = Sgmg, such that Km € Fi.
00
Take K = U K,, and proceeding as in the inequalities 1 and 2 of the-

m=0
orem 1 in order to show that, for each (b;) € Fy, strictly crescent, with

by > 2dp,, we have
Z—<6§:- @)

j=1 -" cEK
Consider the sequence (g,) obtained by ordering the set {dy, ... dy, JUK.
o0
It is easy to see that (g,) € F and so Z l_ng.

Since Ly — % 5— < it follows from (4) that 21 ;<% u
= 3=

In order to proof that (i) = (v) we will show a small lemma.
Lemma 3 Suppose that (i) stands and let 2, € Fi, z, = (25);, such that
Op = E -(—-)— converges to Ly.

Then there is a sequence (£;) such that (z,); < ¢;, for all j and n.

Proof: It is enough to show that, for i € N fixed, the sequence ((z,)i:n > 1)
is bounded.



Since o, — L it follows directly from theorem 3 that ((b,)1) is bounded.
-1

Consider m € N, m > 2. Obviously, {a = mE 31'— {dy,...,dmn-1} € .7-',,}
=1

has a maximum and let M,, be this maximum.

Of course, M < L; and since o, T M there is a ng such that Ly — g, <
L’*%'M, for all n > ny.

From theorem 3 we have that there is a C > 0 such that, if (z3)m > C

then E - < -“"—M-
I—m
This shows that, for n > no we have (2p)m < C. ]

Theorem 4 ((1)=>(v)) If (i) stands then there is a sequence (b;) € Fi such
that 2 < 2 T =, for all (¢;) € Fy.

|—1

Proof: From theorem 1 it follows that (ii) holds.
As in the demonstration of lemma 3, we consider M the supremum of
the set given in and a sequence (z,) of sequences in Fi, z, = (z,)s: ¢ € N),

such that o, = E (—)— converges to Lg.

It follows dlrectly from lemma 3 that there is a sequence (c;) such that
each prefix (c1, ¢y, ..., cp) is the prefix of infinitely many (zn;) (i-e. thereis
a subsequence (z,; ) of (z,) such that (zn;), = ¢,, for 1 < 8 < m).

It is clear that (c,) € Fi and }: < Ly.

Now, since g, — L;, if £ > 0 1t follows from theorem 3 that there are
constants np and C such that, for n > ng

Since we have shown that (c1,...,cc) is a prefix of all elements of a
C

subsequence (zn;) of (z,)we see that L — ) -é <€ [ ]
=1

We will finish this section providing a way to construct a sequence (z.,)
as in the previous result, if (%) holds.

Let n € N* and consider 7 the finite sequences of n elements in Fj.

Of course, the set

{aeR:a—zn: —, (b)) € F¢ }

i=1 b;

6



is bounded, and moreover it has a maximum element.

Then we choose z, = ((2n);:1 < j < n) € FP such that the sum of its
reciprocals is maximal.

Clearly, the sequence (z,) is in F} for all n and, if (i) holds, (2,) has
the same proprieties as in the previous theorem.

3 A Min-Max Principle

In this section we deal with the problem of finding “large” sets free of arith-
metic progressions of length 3. In order to do so, we start by posing a
slightly different problem, that is, we seek sets free of arithmetic progres-
sions of length 3 modulus n. A triplet (b;b;;bx) € [1..n]° is an arithmetic
progressions of length 3 modulus 7 if b; # b; and (b; — b; = b = bj)modn- A
set B is free of arithmetic progressions of length 3 modulus n if it contains
none. We define 3’: as the maximum of the cardinality of these sets.

From now on n will not be divisible by 2 or 3. Since all “common” a. p.
are also a. p. modulus n, it’s clear that ?i < §3. Also, if a set B € [1..25}]
is free of regular a. p. , then it is also free of a. p. modulus n, therefore
s3., < 37:; This fact shows that our new problem is a good approximation
for the previous one.

If B is a subset of [1..n] we will denote FS(B) the number of arithmetic
progressions of length 3 contained in B.

Our min-max theorem is

Theorem 5 Let B C [1..n] with s elements, 1 < s < n — 1, and consider
B¢ =[1..n]\ B. Then P3(B) + F2(B°) = n(n — 1) — 3s(n — s).

Proof: It’s a simple counting result. There are exactly n(n — 1) arithmetic
progressions modulus n, part of them is accounted for in P2(B).

Now, every j € [1..n] takes part in 3(n — 1) distinct arithmetic progres-
sions, and every pair (j, k) € {1..n] x [1..n] participates together in 6 different
progressions.

Now we begin to count the arithmetic progressions that have at least on
element in B°.

There are n—s elements in B® so we begin with 3(n—s)(n— 1) arithmetic
progressions, but we double-counted those progressions which contains a pair
of B¢ elements. Since there are MK;L_I)- such pairs, we need to subtract
3(n — 8)(n — s — 1) from our previous total.

Finally, we note that we discounted all the arithmetic progressions com-
pletely contained in B¢,



All of this adds up to
n(n - 1) - P2(B) =3(n - 5)(n — 1) - 3(n — s) (n — s — 1) + P3(B"),

which gives us our desired result. n
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