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Abstract 

In thia note we consider a sequence (bn) of positive integers without 
arithmetic progr~on.s of a given lenght le ~ 3. We investigate the 
conjecture that states that in this situation E /; < oo. We show that 
this statment is equivalent to some seemingly stronger results. We also 
consider the problem of partitioning the set [1..n) in two sets, one of 
them of size a, 11eeking the minimization of the number of arithmetic 
progressions of lenght 3 contained in it, and we proove a min-max 
result for this problem. 

1 Introduction 

Questions concerning sets of integeI'8 free of arithmetic progressions of a 

given length have been subject of a considerable amount of research since 
Van der Wa.erden famous result appeared in 1928 (see [W]). He showed that 
if the set of integers is splited in a finite number of pieces, then at least one 
of them should have arithmetic progressions of arbitrary length. 

A natural question arose, and it was: Let S! be the cardinality of the 
largest set of integers free of k-arithmetic progressions contained in {l..n]. 

How fa.st does S! grow? 
In [ET], Erdos and Toran proposed two nice conjectures, namely, that 

S"' 
lim -.!!. = 0 and that Vk E N there are positive reals e1c and C1c such 

lc-+oo n 
that S! < C1cn1-e•. The second conjecture was proven false by Salem 

and Spencer in [SS] who showed that S~ > n 1 1o,£.,., where c > 0 is a. 
constant. Subsequently, Behrend improved this bound and showed that 

•supported by CAPES-Brazil 
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1---..i-S! > n y1o, .. (see [Bl). But the first conjecture was positively answered in 
1975 by Szmeredi in [S], using purely combinatorial methods. Shortly after 
that, Furstenberg achieved that same result by mea.ns of ergodic theory. 

Following this, Erdos conjectured (see [E]) that lim (/! )P = 0 for . 
n➔00 n ogn 

every k E N and every /3 E R+. He also proposed that if (b,.) is a grow­
ing sequence of positive integers, no k of those are in progression, then 
E {; < oo. Both these statements remain unproved. It's worth noticing 

nEN" 
that a positive answer to any of this conjectures would imply that there are 
arbitrarily large arithmetic progressions among the prime numbers, a very 
old problem of number theory. In the same article, Erdos proposes some 
other problems related with this, in particular, if is it true that exists, for 
every > 0 and k E N•, a natural no such that, if (b,.) is a sequence of in­
tegers without arithmetic progressions of length k and no :S bi < ~ < • • •, 

00 

then E l :5 e? It's clear that this implies the first conjecture, and we 
n::l 

prove that they are equivalent. In fact we show that the first conjecture is 
equivalent to four other seemingly stronger statements. 

In Section 2 of this work we prove the equivalences and in Section 3 we 
show a min-ma.x principle for S!. 

2 Some equivalences 

We will denote :F• the class of subsets of N (finite or not) that do not have 
k elements in arithmetic progressions, and we will represent by [a .. b] the set 
{neZ:a:5n:5b}. 

Remember that, for positive integers, n and k, k ~ 3, we will denote by 
S! = ma.x#B such that BC [1..n] and BE F,., and let a! be the minimum 
of {t EN: 3B c [l..t], with #B = n and BE Frr}- We note that S,., = n. 

G,. 
From this point until the end of this section we will fix a integer k ~ 3. 
In this section we will show that the following statement 

00 

(i) If (bi) is a sequence in :F1t then ~ f; < +oo 
•=l 

is equivalent to some other seemingly stronger propositions, namely, (i) is 
equivalent to 

00 
(ii) There is a L = L(k) Buch that, for all (bi) E .1"1,, Et< L. 

i=l ' 
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00 

(iii) The series E :J.. is convergent. 
i=l Cli 

(iv) If e > 0 then there is a no = n0 (ki€') E N* such that if (bi) E :F,. with 
00 1 . 

no :5 b1 < b2 < ... then E ;;: < e. 
i=l I 

00 00 

(v) There is a sequence (ct) in :F1c such that E l; $ E t, for all (bi) E 
i=l i=l 

:F1c. 

It's obvious that each one of these 8.$ertions implies (i), but the recipro­
cals are not evident. In [E], for example, Erd~ states (iv) as a " ... related 
problem {with {i)J which seems interesting". 

Lemma 1 If i and j are positive integers and i < j then 1,- < 2i 

Proof: It's clear that if A E :F1c and l is an integer then A+ l is in :F1t, So, 
if A is a. subset of [a .. a + n] and is free of arithmetic progressions of length 
k then #A$ S!. 

Since i < j there are integers q and r, with q ~ 1 and O $ r $ i - 1 such 
that j =qi+ r. 

Then S} ~ qSf + r < (q + l)Sf and this shows that 

st< ;_(q+ 1)st < 2ts;. 
qa ' 

■ 

Now we will construct a special sequence ( 'Ji) in ;:,.. 
First of all, consider for n E N* a K., C J., = [2(3)" .. 3"+1[ of s;, 

elements, such that K., E :F,. (this is possible, since #J., = 3"). 
00 

Now take K = LJ K,. a.nd ordene this set obtaining by this way the 
n=l 

sequence ('Ji). 

Lemma 2 The sequence ('1i) is in :F1c. 

Proof: It's obvious that K., E :F,.. 
Now, suppose, by contradiction, that Kr/.;:,. and take a1 < a2 < ... < 

a" in K such that (an), I $ n $ k is an arithmetic progression. 
Then a1 E K.,1 for some n1 and there is a. smaller j, 2 $ j $ n such 

that a; r/. K.,1 • If j $ 3 it's clear that a2 --: a1 < a;-1 - a; and we have a 
contradiction. 
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Then we must have a2 E Kn2 , with n2 > n1, from this it's clear that 
3"2 < a2 - a1 < 2{3n2). 

So, if a3 E K~, it's clear that a:i - a1 > aa - a:i a.nd we have a contra,. 
diction. 

This implies that a3 E Kna a.nd na > n2, 
Therefore 3"3 < a2 -a1 < 2(3"3 ). From this and the previous inequality 

for 42 - a1 we see that a3 - 02 > a:1 - a1 and this contradict.s the hypothesis 
that (on) is an arithmetic progres.sion. ■ 

Theorem 1 {(i)=>(ii}} If (i) stands then there is a real L = L(k) such that 
00 

for all (bi) E F1t we have E f < L. 
i:1 ' 

In the other hand, since# {ru:i e N'"} n [ai .. ai+l(= s;;, we have 

00 1 oo ( 1) 00 S"· 
M = '°' - = "'"" '°' - > '°' ~-L.-J . L, L.-J . L.-J 3'+1 

i:::1 f/i j=O r,;E[ai • .37+1( f/, j:::O 
(2) 

From (1) and (2) it follows that 

00 1 00 2s•. 00 S"· Eb· $ E J' = 6 L a;!1 < 6M. 
i=l I ;=0 ;:c0 • 

00 
Theorem 2 ((i)=> (ill)) If {i) stands then E :\- converyes. 

j=l 4 i 

Proof: By the same arguments as in the previous demonstration, since 
S1

\ = j and a,~ > j, we have from lemma 1 A- < 2~ and ~ ~ , 

(3) 
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00 

Then, by (2) and (3) we obtain E ~ < 12M. 
j=l "'; 

It follows from theorem 1 that if (i) holds the set 

{ u E R: u = f bl·, for some sequence (b;) E :F,.} . 
J=l J 

is bounded, then it has a. supremum, that we will denote L,.. 

■ 

Theorem 3 ((i)=> (iv)} Suppose that {i) holds and let E > 0, then there is 
a no EN* such that if (bi} is a strictly crescent sequence in :F,. and b1 ~ no 

00 1 
then E 'b; < e. 

i=l ' 

00 

Proof: Let e > 0 and a sequence (d,.) E :F1c such that L,. - E ;t < ;4 • 
j=l , 

Then, choose no such that L,. - f -}; $ t2• 
1=1 1 

Now, for m = 0,1, •.. , consider the interval Im = (2(3m)dno··3m+ldno( 
and Km C Im, with #Km = S3md such that Km E :F1,. 

"O 
00 

Toke K = LJ Km a.nd proceeding as in the inequalities 1 a.nd 2 of the­
m=O 

orem 1 in order to show that, for ea.ch (b;) E :F,., strictly crescent, with 
bi ~ 2d,.., we ha.ve 

00 1 1 E-$ 6 1>·· 
i=l b; iEK' 

(4) 

Consider the sequence (g,.) obtained by ordering the set { d1, ..• ,¾,}UK. 
00 

It is easy to see that (gn) E :F,. a.nd so E -} :5 L,.. 
j=l 1 

Since L1r - E ;t < ff• it follows from (4) that E t; :5 !· ■ 
i=l 1 i=l 1 

In order to proof that (i) =} (v) we will show a. small lemma. 

Lemma 3 Suppose that {i) stands and let z,. E :F,., z,. = (z,.);, such that 
00 

Un = E ~ converges to L1,. 
j=l "J 

Then there is a sequence (l;) such that (z,.); :5 l;, for all j and n. 

Proof: It is enough to show that, for i EN fixed, the sequence ((z,.)i: n ~ 1) 
is bounded. 
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Since Un ➔ L1c it follows directly from theorem 3 that ( (bnh) is bounded. 

Consider m EN, m ~ 2. Obviously, {u = ~E1 
-l;-: {d1,• .. ,d...-1} E .1"1c} 

•=1 
has a maximum and let Mm be this maximum. 

Of course, M < L1c and since Un t M there is a no such that L1c - Un < 
L.2M, for all n ~ no. 

From theorem 3 we have that there is a C > 0 such that, if (zn)m > C 

then E 1 < L.-M. . (z,.); 4 •=m 
This shows that, for n ~ no we have (zn)m 5 C. ■ 

Theorem 4 ((i)=:>(v)) If (i) stands then there is a sequence (b;) E :F1c such 
00 00 

that E ¼ 5 E f, for all (c;) E :F1c. 
i=l i=l • 

Proof: From theorem 1 it follows that (ii) holds . 
.Aa in the demonstration of lemma 3, we consider M the supremum of 

the set given in and a sequence (zn) of sequences in :F,., .Zn = (zn),: i E N), 
00 

such that O'n = E --1,. converges to L1c, 
i=l \Z"nJ• 

It follows directly from lemma 3 that there is a sequence ( c;) such that 
ea.ch prefix (ct, c2, .•. , Cm) is the prefix ofinfi.nitely many (zn;) (i.e. there is 
a subsequence (zn;) of (zn) such that (zn;)• = c., for 1 5 s 5 m). 

00 

It is clear that (c..) E .1"'/c and E f 5 L1c. 
j=l J 

Now, since Un ➔ Lk, if e > 0, it follows from theorem 3 that there are 
constants no and C such that, for n 2:: no 

Since we have shown that ( c1, ••• ,cc) is a prefix of all elements of a 
. C 

subsequence (zn;) of (z,.)we see that L1, - ~ ¾ < e. ■ 
. •=l 

We will finish this section providing a way to construct a sequence (zn) 
as in the previous result, if (i) holds. 

Let n E N* and consider F; the finite sequences of n elements in :F1c, 
Of course, the set 

{ u E R:u = t :., (b;) E :re} 
J=l J 
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is bounded, and moreover it has a maximum element. 
Then we choose Xn = ((xn);: 1 $ j ~ n) E :Ft: such that the sum of its 

reciprocals is maximal. 
Clearly, the sequence (xn) is in r1; for all n and, if (i) holds, (xn) has 

the same proprieties as in the previous theorem. 

3 A Min-Max Principle 

In this section we deal with the problem of finding "large" sets free of arith­
metic progressions of length 3. In order to do so, we start by posing a. 
slightly different problem, tha.t is, we seek sets free of arithmetic progres­
sions of length 3 modulus n. A triplet (bi; b;; b1:) E [1..n)3 is an arithmetic 
progressions of length 3 modulus n if b, -::/:- b; and (b; - b, = bk - b; )modn• A 
set B is free of arithmetic progressions of length 3 modulus n if it contains 
none. We define s! as the maximum of the cardinality of these sets. 

From now on n will not be divisible by 2 or 3. Since all "common" a. p. 
are also a. p. modulus n, it's clear that :S: $ S!. Also, if a set B E [1..¥] 
is free of regular a. p. , then it is also free of a. p. modulus n, therefore 
S¥ $ s;. This fact shows that our new problem is a good approximation 

for the previous one. 
If B is a subset of [l..n] we will denote i>:(B) the number of arithmetic 

progressions of length 3 contained in B. 
Our min-max theorem is 

Theorem 5 Let B C [1..n] withs elements, 1 $ s $ n - 1, and consider 
Bc = [1..n] \ B. Then P!(B) + P:(Bc) = n(n - 1) - 3s(n - s). 

Proof: It's a. simple counting result. There are exactly n(n -1) arithmetic 
progressions modulus n, part of them is accounted for in ~(B). 

Now, every j E [1..n] takes part in 3(n - 1) distinct arithmetic progres­
sions, and every pair (j, k) E (1..n] x [1..n) participates together in 6 different 
progressions. 

Now we begin to count the arithmetic progressions that have at least on 
element in Be. 

There are n-s elements in Bc so we begin with 3(n-s)(n-1) arithmetic 
progressions, but we double-counted those progressions which contains a pa.ir 
of Bc elements. Since there are (n-•H;-•-l) such pairs, we need to subtract 
3(n - s)(n - a - 1) from our previous total. 

Finally, we note that we discounted all the arithmetic progressions com-
pletely contained in Bc. · 
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All of this adds up to 

n(n - 1) - ~(B) = 3(n - s)(n_ - 1) - 3(n - s)(n - s - 1) + ~{Be), 

which gives us our desired result. 
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