Modeling temporal morphological systems via lattice dynamical systems (2001)
- Authors:
- USP affiliated authors: BARRERA, JUNIOR - IME ; GUBITOSO, MARCO DIMAS - IME ; HIRATA, NINA SUMIKO TOMITA - IME
- Unidade: IME
- DOI: 10.1117/12.424981
- Assunto: SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings of SPIE
- Volume/Número/Paginação/Ano: v. 4304, p. 265-276, 2001
- Conference titles: Nonlinear Image Processing and Pattern Analysis
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BARRERA, Júnior et al. Modeling temporal morphological systems via lattice dynamical systems. Proceedings of SPIE. San Jose: SPIE. Disponível em: https://doi.org/10.1117/12.424981. Acesso em: 27 dez. 2025. , 2001 -
APA
Barrera, J., Dougherty, E. R., Gubitoso, M. D., & Hirata, N. S. T. (2001). Modeling temporal morphological systems via lattice dynamical systems. Proceedings of SPIE. San Jose: SPIE. doi:10.1117/12.424981 -
NLM
Barrera J, Dougherty ER, Gubitoso MD, Hirata NST. Modeling temporal morphological systems via lattice dynamical systems [Internet]. Proceedings of SPIE. 2001 ; 4304 265-276.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1117/12.424981 -
Vancouver
Barrera J, Dougherty ER, Gubitoso MD, Hirata NST. Modeling temporal morphological systems via lattice dynamical systems [Internet]. Proceedings of SPIE. 2001 ; 4304 265-276.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1117/12.424981 - Identification of input-free finite lattice dynamical systems under envelope constraints
- A new approach for identification of cancer-related pathways using protein networks and genomic data
- Iterative design of morphological binary image operators
- A unifying view for stack filter design based on graph search methods
- Bayesian switching algorithm for the optimal increasing binary filter
- High-performance algorithm for Boolean function minimization: the partitioned incremental splitting of intervals (PISI)
- Automatic programming of binary morphological machines by design of statistically optimal operators in the context of computational learning theory
- An efficient, parallelized algorithm for optimal conditional entropy-based feature selection
- Basis computation algorithms
- Automatic programming of morphological machines by PAC learning
Informações sobre o DOI: 10.1117/12.424981 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
