Exportar registro bibliográfico

Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos (2002)

  • Authors:
  • Autor USP: FERRAZ, RAUL ANTONIO - IME
  • Unidade: IME
  • Sigla do Departamento: MAT
  • Subjects: ÁLGEBRA; TEORIA DOS ANÉIS
  • Language: Português
  • Abstract: Sejam G um grupo, Z o abel dos inteiros, e seja Z[G] o anel de grupo de G com coeficientes em Z. Em [HP] Hartley e Pickel mostraram que a menos que G seja abeliado ou 2-Hamiltoniano, o grupo de unidades de Z[G], U(Z[G]) contém um grupo livre. Denotaremos por U1(Z[G]) de aumento 1. Em [G1], [G2], [G3] e [G4] J. Z. Gonçalves estudou a existência de grupos livres no grupo de unidades de anéis de grupo. Em [MS] Marciniak e Sehgal construíram grupos livres de U(Z[G]) a partir de unidades bibíclicas e do anti-automorfismo. Até o momento, este é o único método explícito de se produzirem unidades que gerem um grupo livre. A partir de uma direção diferente Dokuchaev e Gonçalves [DG1] mostraram que U(Z[G]), com G de torção, não satisfaz uma identidade de semigrupo, a menos que G seja abeliano ou 2-Hamiltoniano. Nesta demonstração são construídas duas unidades u e v, com v bicíclica, e u unidade de Bass, que não satisfazem um tipo específico de identidade de semigrupo, chamado equação-R (R-equation). Este resultado nos leva às seguintes questões: (1) u e v geram um semigrupo livre em U(Z[G])? (2) u e v geram um grupo livre em U (Z[G])? No primeiro cap´tuo mostraremos que o grupogerado pelas unidades u e v como construídas em [DG1], que chamaremos de Go é na verdade metabeliano. Além disso, provaremos o teorema o grupo Go={u, v} é isomorfo a A X C onde A é um grupo abeliano livre e C denota o grupo cíclico infinito. Com isto concluímos que u e v não geram um grupolivre de U(Z[G]). Mostraremos ainda que o semigrupo gerado por u e v não é o semigrupo livre. Contudo, no segundo capítulo modificaremos um pouco a unidade bibíclica v, em relação à unidade cíclica de Bass u e com isso teremos que no caso em que G é o grupo diedral de 2n elementos, que denotaremos por Dn, existirão no subgrupo {u, v} grupos livres não abelianos, ainda no segundo capítulo construiremos grupos livres de posto maior em Dn gerados a partir da ) unidade bicíclica e do gerador de ordem n de Dn que denotaremos por x. Muito se tem estudado em relação ao grupo de unidades de Z[Dn], onde Dn é o grupo diedral de ordem 2n. Em [HP2], Hughes e Pearson caracterizam U1(Z[D3]) como um subgrupo de matrizes de GL2(Z). Em [Polc], Polcino caracteriza U1(Z[D4]) também como subgrupo de GL2(Z). Na mesma direção temos os trabalhos de Passman e Smith [PasSmi] e Fernades [Fer]. Porém, há pouca coisa feita no intuito de caracterizar U1(Z[Dn]) em termos geradores e relações. Neste sentido temos em [PS], um descrição quando n=3. Afim de aprofundar nossos conhecimentos sobre as unidades de Z[Dn] caracterizamos no terceiro capítulo as unidades centrais de U1(Z[Dn]), e aproveitando as mesmas técnicas caracterizamos as unidades centrais de U1(Z[DCn]), onde DCn é o grupo dicíclico de ordem 4n. É um resultado bastante conhecido em Teoria de Grupos que se todo subgrupo H de um grupo G é normal então ou G é abeliano ou é hamiltoniano, isto é, G é da forma Ks x A x E, onde Ks é o grupo dosquatérnios de ordem 8, A é um grupo abeliano onde todo elemento tem ordem ímpar, e E é um 2-grupo abeliano elementar. Se A for trivial diremos G é 2-hamiltoniano. Devido a [HP] temos que U(Z[G]) não contém grupos livres se e somente se G é abeliano oi 2-hamiltoniano. Se G for hamiltoniano mas não 2-hamiltoniano, teremos que U(Z[G]) contém grupos livres. Contudo não poderemos usar as técnicas de [MS] para construir tais grupos, visto que se G não tem subgrupo não normais U(Z[G]) não terá unidades bicíclicas. No quarto capítulo construiremos grupos livres em U(Z[G]) quando G é um grupo hamiltoniano, não 2-hamiltoniano, usando apenas unidades cíclicas de Bass
  • Imprenta:
  • Data da defesa: 22.03.2002

  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERRAZ, Raul Antonio; GONÇALVES, Jairo Zacarias. Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos. 2002.Universidade de São Paulo, São Paulo, 2002.
    • APA

      Ferraz, R. A., & Gonçalves, J. Z. (2002). Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos. Universidade de São Paulo, São Paulo.
    • NLM

      Ferraz RA, Gonçalves JZ. Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos. 2002 ;
    • Vancouver

      Ferraz RA, Gonçalves JZ. Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos. 2002 ;


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021